
-A12i 794 ADVANCED AVIONIC SYSTEMS FOR MULTIMISSION APPLICATIONS i/il
VOLUME I1(U) BOEING MILITARY AIRPLANE CO SEATTLE IdA
L A SMITH ET AL. OCT 82 AFIIAL-TR-82-1876-VOL-2

UNCLASSIFIED F336i5-77-C-i252 F/G 9/2 N

EhhhhhhhhhhiI
smhhhhhhhhhhh
smhhhhhhhhhhh
EhhhhhhhhhhhhE
ENOMINEEShIND

'r~r ~ j• -- •.* * S- ."bL -

1111 11 .2

1.25 11411.

MICROCOPY RESOLUTION TEST CHART
NATIOAL UE AU OF STAWAS- I1-63-A

AFAL-TR-82-1076

Volume II

-m ADVANCED AVIONIC SYSTEMS FOR MULTIMISSION APPLICATIONS

Boeing Military Airplane Company
Seattle, Washington 98124

October 1982

Final Report for Period May 1979 - June 1980 A

Approved for public release, distribution unlimited.

8AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

82 11 26 010

NOTICE

when Government drawings, specifications, or other data.are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any

other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

, CLAUDE M FLETCHER, JR L DANIEL SNYDER, Chief

PROJECT ENGINEER Mission Software & System Integration Group
Mission Software & System System Avionics Division

Integration Group

FOR THE CONNAJDER

Acting Chief, Sl Avionics Division
* Avionics Laboratory

"Mf your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notifyAnJAkAq-1,
W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUhIWER GL OVT ACCESSON NO. 3. RECIPIENT'S CATALOG NUMBER

AFWAL-TR-82-1076, Volume II 1b _ _

4. TITLE (and Subtitle) S. YPE OF REPORT & PERIOD COVERED

ADVANCED AVIONIC SYSTEMS FOR MULTIMISSION Final Report for Period
APPLICATIONS May 79 - b.in RO

4. PERFORMING ORG. REPORT NUMEER

e 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Leroy A. Smith, Stephen W. Behnen,
Keith D. Pratt, Mack B. McCall, et al. F33615-77-C-1252

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Boeing Military Airplane Company Project 2003, Task 01,
Seattle, Washington 98124 Work Unit 10

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Avionics Laboratory (AFWAL/AAAS-1) Octobnr leR?
Air Force Wright Aeronautical Laboratories (AFS A3. NUMBEROFPAGES

Wright-Patterson Air Force Base, Ohio 45433 81
14. MONITORING AGENCY NAME & AOORESS(I! different fboo C;Wtol ln_ OfficE) IS. SECURITY CLASS. (of this report)

Unclassified
IS. DECLASSI FICATION/DOWN GRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (o the abstract mtme i Block 20. iI diffment In Report)

IS. SUPPLEMENTARY NOTES

Portions of this report were presented at the 1980 NAECON conference in a paper
entitled, "A Single Processor Synchronous Executive Derived from the DAIS Exec-
utive," and authored by S. W. Behnen and R. L. Gutmann. The computer data con-
tained in this technical report are theoretical and in no way reflect Air-Force.
1. KEY WORDS ?doCmon en reverse aide & noessai Amid idmftfyb;y block nanbet) *

Computers, avionics, synchronous systems, DAIS program, software executive,
microprocessors, information transfer systems, hardware standards,
software standardsK

20. ABSTRACT (Continue an rrmse side It neceeaar and identify by block nimubel)

This study produced system control procedures and executive software
design specifications for three different information transfer systems (ITS)
each des'i-ed to implement multimission aspects of an avionic system. The
stationay master is the best understood ITS and has multimission advant-
ages if the applications software is designed for change. The non-
stationary master is an excellent candidate for a pod-oriented multimissionR

DD IRAN7 1473 EDITION OF INOV 65 IS OBSOLETE Unclassified

6 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

" .. -

SECURITY CLASSIFICATION OF THIS PAGE(fthm Data Eaamwd)

Block 20 (,continued)

* '->iiplication. The contention access ITS is designed to be most
flexible in terms of change, at the potential cost of higher
initial integration checkout due to the asynchronous nature of
the communication.

A second task was to design, develop and build a compact version
of the DAIS executive that would function in a one processor
system and support only synchronous bus communications. This

* executive, called the Single Processor Synchronous Executive (SPSE),
was tested and delivered to AFWAL.

The primary goals of this task were to build a functional
executive that:

1.-Maintains the DAIS executive-to-applications interface-

2., 'Communicates on a MIL-STD-1553A bus'

3.4-Iscoded in J73j/I

4.k -Supports the avionic system load for an AMST or modern
* .tactical fighter aircrat

5<1IjUses DAIS support software (LINKS, ALAP, PALEFAC, PALEFAC
processor)-

6. 'Requir-es -s-ubstantially less memory than the baseline DAIS
executive,,

(.4AIl goals were achieved.

Block 18 (continued)

owned software programs.

UNCLASSIFIED
SECURITY CLASSIFICATION OF TMIS PAOE~lShrn Date Ento,.d)

FOREWORD

VOLUME II

This final technical report for the Advanced Avionic Systems for
Multi-Mission Applications (AASMMA) was prepared by The Boeing Military
Airplane Co. (BMAC), Seattle, Washington. The final report consist of
three separately bound volumes which covers the work performed under
contract F33615-77-C-1252 during the period of January 1978 to June
1981.

The program was performed in two phases for the Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB, Ohio 45433. The first
phase covered three tasks which addressed (1) Distributed Avionics
Information System Design, (2) Avionic Cost Analysis Methods & Models,
and (3) Embedded Microcomputer Standardization Concepts. These tasks
were conducted for AFWAL/AAAA. The contract monitor was Mr Gary
Wambold, the program manager was Mr Donald E Dewey, and the principal
investigators were Dr Leroy A Smith and Mr Al Crossgrove. Volume I of
this report describes this phase.

The second phase of the program Volumes II and III covered tasks which
addressed (1) the Development & Evaluation of Advanced Digital Avionics
System Architectures and (2) the Development of a Single Processor
Synchronous Executive (SPSE) derived from the Digital Avionics
Information System (DAIS) Executive. These tasks were conducted for
AFWAL/AAAS and the AFWAL contract manager was Mr Claude M Fletcher, Jr,
the Boeing program manager was Dr Leroy A Smith, and the principal
investigator was Mr Stephen W Behnen.

The other significant contributers to this effort included:

Richard F Bousley Michael E McSharry
Tammy R Cremeen Keith D Pratt
Dr Robert L Gutmann Gerald Sommerman
John J Henrick Laura Townsend
James H Mason Frank E Troth
Mack B McCall C Ray Turner
Kevin M McMahon

all from The Boeing Company; James Gracia, Edward Comer, and Joseph
Malnar, all from the Harris Corporation; Capt Robert Percefull from the
U S Air Force; and Lynn Trainor from the Systran Corporation.

A/
' T i .. * ;

DTII

ttt.rk

TABLE OF CONTENTS

Page

1.0 Introduction........................ 1

1.1 Scope 1
1.2 Background 1

2.0 AASMMA Program Summary - Tasks IV and V 3

3.0 Task Description Summary 5
3.1 ask V -Summary of the Information Transfer Systems..

3.1 Task IV - umr fteIfrainTase ytm.. 5

3.1.1 Stationary Master ITS - SMITS 5
3.1.2 Nonstationary Master ITS 5
3.1.3 Contention Multiple Access ITS 6
3.1.4 Comparison of Information Transfer Systems 7
3.1.5 Task IV Conclusions. 7

3.2 Task V -SPSE Summary 8

4.0 Detailed Program Findings 11

4.1 Candidate Information Transfer Systems for Multimission
Applications 11

4.1.1 Stationary Master 11

4.1.1.1 SMITS Control Procedures 11
4.1.1.2 SMITS Executive Functional Description . 13

4.1.2 Nonstationary Master15

4.1.2.1 NSMITS Control Procedures 16
4.1.2.2 NSMITS Executive Design 17

4.1.3 Contention Multiple Access Information Transfer
System 18

4.1.3.1 CMAITS Control Procedures 19

4.1.3.2 CMAITS Executive Design 20

4.2 Analysis of Information Transfer System Performance. .. 21

4.2.1 Message Wait Time.. 21

4.2.1.1 Stationary Master ITS (SMITS) 21
4.2.1.2 Nonstationary Master ITS (NSMITS) 27
4.2.1.3 Contention Multiple Access ITS (CMAITS).. 28

4.2.2 Information Throughput 29

4.2.2.1 Stationary Master ITS (SMITS) 29

v

-7o-

TABLE OF CONTENTS (Concluded)

4.2.2.2 Nonstationary Master ITS (NSMITS) 29

4.2.2.3 Contention Multiple Access ITS (CMAITS) 31

4.3 Single Processor Synchronous Executive 32

4.3.1 Task Purpose 32
4.3.2 Task Approach 324.3.3 Documentation Produced 33
4.3.4 Support Tools 33

4.3.4.1 Potential Development Problems 35
4.3.4.2 SUBSORT o 36
4.3.4.3 Universal Source Files o . . . 38
4.3.4.4 INGEUNS * 0 0 38

4.3.5 Description of SPSE 40
4.3.6 Comparison of DAIS Executive and SPSE 40
4.3.7 Modifications to DAIS Executive Structure 42
4.3.8 Modifications to the Data Base Structure 42
4.3.9 Demonstration Results 43
4.3.10 SPSE Performance 45

5.0 Recommendations 47

APPENDICES

A Rationale for Stationary Master Information

Transfer System Control Procedures 49

B Rationale for Nonstationary Master Information
Transfer System Control Procedures 64

C Rationale for Contention Multiple-access
Information Transfer System Control Procedures 75

Vi

7

LIST OF ILLUSTRATIONS

Page

Figure 2-1 Master Program Schedule 4

Figure 4-1 Effect of Number of Devices on Message Latency 23

Figure 4-2 Effect of Message Length on Message Latency 24

Figure 4-3 Effect of Bandwidth on Message Latency 25

Figure 4-4 Effect of Trigger Message on Contention Message Latency . . . 26

Figure 4-5 Effect of Bandwidth on Throughput 30

Figure 4-6 SUBSORT Inputs and Outputs 37

Figure 4-7 Generating Individual Source Files from a USF 39

Figure 4-8 SPSE Memory Requirement Versus Time 46

LIST OF TABLES

Table 3-1 COMPARISON OF DAIS EXECUTIVE AND SPSE 10

Table 4-1 TASK V DOCUMENTATION 314

Table 4-2 PMD DELETIONS IN SPSE 44

vii

, , ,

DEFINITIONS AND ACRONYMS

AASM A Advanced Avionic Systems for Multi-Mission Applications
ADA New DoD Language Replacing J73
AFWAL Air Force Wright Aeronautical Laboratories
ALAP Avionics Laboratory Assembler Program

* BIU Bus Interface Unit
BMU Bus Monitor Unit
BMAC Boeing Military Airplane Company

CDR Critical Design Review
CMAITS Contention Multiple Access Information Transfer System
CPU Central Processing Unit

DAIS Digital Avionic Information System
DARTS Distributed Architecture Research Test System
DOD Department of Defense

HOL High Order Language

INGEUNS INterpreter fcr GEnerating Executives from UNiversal Source files
ITS Information Transfer System

. LINKS Software Test Stand Linker

MAP Model Avionics Program
MMU Mass Memory Unit

* NSMITS Nonstationary Master Information Transfer System

* OFP Operational Flight Program

PALEFAC Partitioning, Analyzing, Linking, Editing Facility
PCP Processor Control Panel
PDR Preliminary Design Review
PE Processing Element
PMD PALEFAC Mission Data

RAM Random Access Memory
ROM Read Only Memory
RT Remote Terminal

SCADU Super Control and Display unit
SCP System Control Procedures
SIL Synchronous Instruction List
SMITS Stationary Master Information Transfer System
SPSE Single Processor Synchronous Executive

URT Universal Remote Terminal
USF Universal Source File

V&V Validation and Verification

viii

1.0 INTRODUCTION

1.1 SCOPE

* This technical report summarizes the activities and results of the Advanced
Avionic Systems for Multi-Mission Applications (AASMMA) program. Phase 1 of the
AASMIA program studied current and projected information transfer system designs
and architectures for avionic systems which require a multi-mission capability.
Volume I of this report summarizes the Phase 1 activities.

The purpose of Phase 2 was: (1) to examine in depth and to document the informa-
tion transfer systems derived in phase 1; (2) to design, develop, and deliver a
compact version of the DAIS executive which functions in a one processor system
and which supports only synchoronous bus communications. Volume 2 summarizes
phase 2, which is documented in detail by: control procedures and part one
executive specifications for each information transfer system; and, parts one
and two executive specifications, control procedures, a second AASM4A interim
report, and test plans, procedures and reports for the single processor
synchronous executive. The background of phase 2 of the AASHMA program is
summarized in paragraph 1.2. Paragraph 2.0 describes the purpose of the tasks in
phase 2. Paragraph 3.0 is a summary of the work performed and paragraph 4.0
expands the summary by describing the detailed work documented. Recommendations
for further work are provided in paragraph 5.0.

1.2 BACKGROUND

In the past few years it has been the goal of the Air Force to develop and apply
methods and technologies that would permit avionic systems evolve in an orderly
manner as mission needs change. A lack of interface commonality among avionic
systems has made the task of system design and integration, as well as the task
of upgrading or modifying systems, very costly. The Digital Avionics Information
System (DAIS) concept was established by the Air Force to investigate and estab-
lish standard interfaces among the various elements of avionic systems to reduce
this cost. These concepts are being matured and are being considered for several
near term retrofit airplane programs (F-111 A&E, F-4, F-15, F-16) and are planned
for future systems.

The concept of multimission roles for a single airframe (or a restricted family
of airframes) is influencing our military weapon planning. Threats, which are
changing more rapidly than ever before, make it necessary to plan for mXssion-
adaptive and threat-adaptive avionic suites over the life of an airframe. Two
multiMission concepts are emerging. One approach is to design a "core" set of
avionics and separable "peripheral" avionics so that the avionics suite can be
readily changed by removing and replacing mission dependent functions. Another
approach is to depend on well established interface standards (e.g., standard
hardware and software modules) which permit an avionics system to be updated
(retrofit) throughout the life of the airframe. These approaches are not
mutually exclusive, and they can be complementary. Therefore, the adaptation of
current interface standards and the exploitation of new digital technologies to
achieve the multimision capalility is required.

e1

-. Multimission roles can be readily accomplished if the multimission functions can
be isolated and made independent. Isolation (independence) between functions
can be achieved by using the inherent separation of funct._ns found in
hierarchical architectures. Such architectural features would make it easier to
develop, integrate, maintain and modify (update) an avionics system or to use it
in an aircraft having multimission roles. Most avionics technology and design
standards, including the DAIS related standards, were designed primarily for

-: single level architectures using minicomputers as the processing elements. How-
* ever, multilevel or hierarchical architectures require a high degree of dis-

tributed processing. This factor alone has precluded the use of this archi-
tecture because of the high cost of military minicomputers. Now that micro-
processor technology has progressed to the point where military qualified micro-
computers cost substantially less than military qualified minicomputers, the

* hierarchical architecture using distributed processing can become a reality.

j

7:

2

,o

2.0 AASMMA PROGRAM SUMMARY - TASKS IV AND V

Phase 2 of the AASMMA program consisted of Tasks IV and V. The purpose of Task IV
was to further examine the three candidate information transfer systems defined
in Task I. The result of this effort was the generation of a system control
procedure and a part one computer program design specification for each system.
The purpose of Task V was to design, develop, build, and deliver a compact
version of the DAIS executive which would function in a one processor system and
support only synchronous bus communications. This task was started in June 1979
and was completed in April 1980. The master program schedule for AASMMA is shown
in Figure 2-1.

F

,!.

-. "i" U

i -i '

.g

e.&4 .

].

2 .m ,m md m,. ,*.,.,,.. ,. ,$. ,w. ,.

3.0 TASK DESCRIPTION SUMMARY

Tasks IV and V of the AASO4A program were concerned with the development of: the
detailed description of three ITS designs, including system control procedures
and Part I computer program design specifications (Task IV); a single processor
synchronous executive member of the DAIS executive family (Task V).

3.1 TASK IV £ SUMMARY OF INFORMATION TRANSFER SYSTEMS

Three separate information transfer systems (ITS) were defined in Phase I to
support multimission applications. These are the stationary master, nonsta-
tionary master and contention access ITS. The common ground for the development
of each of these ITS is that each is based on the system defined in the DAIS
program and each retains the DAIS executive/applications interface. Therefore,
applications software designed to operate with one ITS should run with any of the
information transfer systems.

43.1.1 Stationary Master ITS - SMITS

The stationary master ITS is the closest of the three ITS to the current DAIS
* system. The DAIS system is composed of a set of one to four minicomputers

(AN/AYK-15) communicating among each other and among remote terminals via a dual
redundant serial bus (MIL-STD-1553A/DAIS). The executive in the AN/AYK-15 is
designed to support applications software task communication to such an extent
that individual tasks could be moved from one AN/AYK-15 minicomputer to another
simply by altering the executive communication tables. The concepts embodied in
the DAIS program have proven to be an appropriate baseline upon which to build
and expand to accomodate the microprocessor and more highly integrated avionic
systems of the 1980's and especially to build low life cycle cost avionic systems
that are adaptable to growth and change.

*' The enhancements made to the DAIS ITS for the stationary master ITS include three
specific areas: multibus capability, distributed processing accommodation, and
MIL-STD-1553B bus protocol.4

r 3.1.2 Nonstationary Master ITS

The nonstationary master concept was developed to have an independent controller
for each mission or sub-mission function. A system configuration would consist
of a controller for the core avionics which is used on every mission and a
separate controller for each separate pod- or pallet-mounted set of equipment.
There will probably be very few controllers (on the order of two or three), so a
simple round-robin control mechanism was chosen. Other than the control transfer
and some device management, the functioning of the nonstationary master and

i stationary master is identical. The description of the stationary master applies

5

equally well to the nonstationary master. The processing element at the start of
the cycle is the primary master and the other controllers are called secondary

masters. During the time that any master has control, it acts as a stationary
master controlling all transactions on the bus. The primary master has the
additional duties of initiating all minor cycles and monitoring each secondary
master so that it does not exceed its alloted time for control. The primary
master is also responsible for reconfiguration due to failure of any secondary
masters. One secondary master is designated as a monitor for the primary master
in case of primary failure. Each master may be responsible for the control of
devices on the bus, but the spheres of control will be mutually exclusive, so
that one device will not be controlled by more than a single master even though
several masters might communicate with a given device. The primary master will
be responsible for the control of the majority of devices. Each secondary master
will probably be an interbus processor serving some specialized subsystem such as
that associated with pod-mounted equipment, while the primary master controls
the core avionic systems.

3.1.3 Contention Multiple Access ITS

The contention multiple access information transfer system is considerably dif-
ferent in terms of bus control from the other two ITS. In the contention
multiple access information transfer system, there are no unique bus masters,
rather each device contends for use of the bus. When a device wishes to trans-
mit, it will sense the communication activity on the bus media to determine if a

* transmission is allowed. If activity if detected, the device will wait until the
transmisslon ceases, then the device will begin a random delay associated with
its queued message's priority before attempting to transmit. If the bus has
remained free of communication activity for the duration of the delay, the device
initiates transmission. Utilizing this approach it is possible for multiple
devices to attempt communications on the bus simultaneously. If this occurs, a
collision is said to have occured, and the transmissions are terminated and
rescheduled for transmission later. Once a device acquires the bus and begins
communication which does not result in a collision, it may transmit until a given
length of time expires. During this period of time as many complete contiguous
messages can be transmitted in the time interval will be scheduled and
transmitted. This contention mechanism allows considerable flexibility in sys-
tem integration. The advantage of easily providing for new, modified or multi-
mission oriented sensors is obvious because of the independent nature of the
processors. Modifications to the system will primarily affect the processors
responsible for control of the modified section and others will remain
unaffected. Each of the messages are addressed by content rather than by origin
or destination and multiple bus interface units can accept the same messages
because of the broadcast nature of the protocol. The operation of such a
transmission system is primarily asynchronous in nature. Any cyclic operations
are scheduled to be performed by the executive using the processing element's
local clock. This local synchronism, coupled with time tagging of time critical
sensor data, can potentially provide more accurate data to functions requiring
data generated on a time oriented basis than systems that operate on a minor
cycle basis. However, using this method of timing does not preclude the use of

ominor cycles, which could be used to synchronize local processing element clocks
and control the transmission of data on a periodic minor cycle basis.

in 6l I °n . . i' '' m I m m m n

3.1.4 Comparison of Information Transfer Systems

There are specific advantages and disadvantages to each of these ITS. The sta-

tionary master ITS has the greatest advantage of simplicity of operation. This
type ITS ha- recently been used in aircraft systems (e.g., F-16, F-18, B-1, B-52
OAS). The SMITS has low processor overhead for synchronous messages and the
control is centered at a single location, making integration testing the easiest
of the three ITS. There are few disadvantages with this DAIS-like ITS, other
than very poor asynchronous message handling capabilities. However, two other
ITS offer better mission flexibility than this ITS. The nonstationary master is
designed specifically for multimission applications, in which the secondary mas-
ters control the different aspects of a mission, such as specialized subsystems
carried as pod or pallet mounted devices. The core avionics could remain stand-
ard while the mission-specific avionics under a secondary master control could be
altered according to mission. The disadvantages of this system lie only in the

overhead of transferring control from the primary controller through the second-
ary controllers and back to the primary control on a regular basis. If the

number of controllers is limited to two or three, then this disadvantage is
significantly ameliorated. There are several advantages provided by the conten-
tion system. The first of these is that the system is the easiest system to add
multimission functions. Each new function could accept the core avionics data
without impact to the system, since data are transmitted in a source oriented
fashion. The data associated with mission specific functions would be generated
by contending for the bus and transmitting the appropriate data to its own
subsystems and to integration and display functions. The upgrading of an
existing contention system, by adding new functions, can be done easily because
of the asynchronous operation of the ITS. Several drawbacks to the contention
system have been identified. These include the somewhat asynchronous nature of
the system (even using minor cycles). Difficulties occur in the debugging of the
system during integration because error conditions are not easily repeatable.
This asynchronous system also could potentially require different feedback con-
trol algorithms for applications software than are normally used in totally
synchronous systems. These algorithms do not allow the simplifying assumptions
usually made in time dependent algorithms.

3.1.5 Task IV Conclusions

Advanced architectures using distributed microprocessors and multiple levels of

buses are a reality and the AASMMA program has provided a number of mechanisms to
provide the required control. The DAIS executive can be rather easily modified
to include multiple levels of bussing given the executive's modularity. The DAIS
type of executive such as the SPSE could also be installed in the microprocessors
of the 1980's, because both timing and space will allow for the inefficiencies
inherent in a generalized executive such as DAIS. Avionic systems in the future
will be constructed using many microprocessors and few miniprocessors, all
interconnected via a number of buses. The entire system will be organized into a
functional hierarchy of processing using one or more types of information trans-
fer systems depending on the requirements of independence of function or multi-
mission changes. If the multimission aspects of an avionic system are to be

V 7

L'1 1m h h I lll I I II l n I u nu nl lm nm I :u .' '

implemented, then the three information transfer systems presented are excellent
candidates. The stationary master is the best understood ITS and has multi-
mission advantages if the applications software is designed for change. The
nonstationary master is an excellent candidate for a pod-oriented multimission
application. The contention access ITS is designed to be most flexible in terms
of change, at the potential cost of higher initial integration checkout due to
the asynchronous nature of the communication. Work on the contention system
should continue in order to evolve and test it to the level of the master
oriented protocols. A comparison of the three information transfer systems for
both cost and dynamic performance remains to be done. Such an analysis would be
of substantial benefit to answer remaining questions as to the actual merits of
each of the functioning avionic information transfer systems.

3.2 TASK V - SPSE SUMMARY

The purpose of Task V was to design, develop, build and deliver a compact version
of the DAIS executive which would function in a one processor system and support
only synchronous bus communications. This executive, called the Single Pro-

* cessor Synchronous Executive (SPSE), has been tested and delivered to AFWAL.

The DAIS executive is a powerful, general-purpose executive for avionic systems
which can support up to four processors communicating either synchronously or

. asynchronously over a MIL-STD-1553 bus. The DAIS executive was evaluated in a
previous study (Evaluation of DAIS Technology Applied to the Integrated Naviga-

*tion System of a Tactical Transport, AFAL-TR-1061) which indicated that the DAIS
executive does an excellent Job of servicing the requirements of a large and
complex avionics system. For a small, less complex system, however, using the
DAIS executive could be very inefficient. Substantial memory is required to

-* provide features which may not be needed to support a small system. The large
size of the full-capability DAIS excutive has generated reluctance among some
contractors to adopt it for use in new systems. Task V addressed this problem by
analyzing the DAIS executive to determine which portions could be eliminated

* while still supporting the requirements of less complex systems. The results of
this analysis were documented in the SPSE interim report.

The primary goals of Task V were to build a functional executive that:

1. Mintains the DAIS exeoutive-to-applications interface.

2. Communicates on a MIL-STD-1553A bus.

3. Is coded in the JOVIAL high order language (J73/I).

4. Supports a synchronous bus communication requirement.

5. Supports the avionic system load for an AMST or modern tactical fighter
aircraft.

6. Uses the DAIS support software such as LINKS, ALAP, PALEFAC and the PALEFAC
preprocessor.

8

7. Requires substantially less memory than the baseline DAIS executive.

All goals were achieved.

All documentation of the SPSE was done using the existing DAIS documentation as a
baseline. This included the System Control Procedures, the Part I (Design)
specification, the Part II (Development) specification, the Test Plan, the Test
Procedures, and the Test Reports. Since the basic structure of the DAIS execu-
tive was unchanged in the SPSE, the paragraph numbering of the DAIS Part I and
Part II specifications was maintained in the SPSE documents to permit easy
comparison of the two executives. Table 3-1 compares the main features of the
DAIS executive and the SPSE.

The SPSE design, which provided the features shown in table 3-1, was reviewed and
approved by ANAL at the SPSE PDR and the SPSE CDR. Coding of the SPSE was begun
following CDR.

The coding process was assisted by the use of two Boeing developed support
software programs, SUBSORT and INGEUNS. SUBSORT accepts a list of all procedures
called by a given procedure and generates a list of all procedures which call a
given procedure. SUBSORT also performs a similar service with data items.
INGEUNS creates a single compile-ready source file from a Universal Source File
(USF). A USF contains the code for every version of the DAIS executive.

Once coding was completed, the SPSE modules were compiled and linked with the
Model Avionics Program (MAP). MAP is a special applications program designed to
place a controlled load on the SPSE, where the load is representative of a
typical avionic system. The linked system was then installed in the DARTS

*laboratory (located in the Kent Space Center of the Boeing Company) for testing.
Debug of the entire SPSE was completed in two weeks. Of this time, only about 3
days were spent in debugging the executable code itself, the rest of the time was
spent in debugging the data base which had been modified for this system. Much
of the success in being able to rapidly debug the SPSE software can be attributed
to the use of the SUBSORT and INGEUNS support tools.

The SPSE was demonstrated at both Boeing and and AFAL, following the demonstra-
tion procedures developed as part of the contract. Both demonstrations were
completely successful even though technical difficulties prevented either demon-
stration from being conducted in the exact manner specified in the demonstration
procedures. One of the parts of the ANAL demonstration was the test of the SPSE
using the ANAL Validation and Verification program. The SPSE passed the valida-
tion and verification test on the second attempt.

TABLE 3-1. COMPARISON OF DAIS EXECUTIVE AND SPSE

DAIS (September 1979) SPSE (March 1980)

Number of Mission Multiple (to 4) Single
*i Computers Supported

Bus Communication Synchronous and Asynchronous Synchronous

Remote Terminals 30 30

Realtime Statements Schedule Schedule
Cancel Cancel
Terminate Event Wait
Event Wait Signal
Time Wait Read
Signal Write
Read
Write
Broadcast
Trigger
Forced Read

Executive Overhead for X (where X represents the 0.60X to
Synchronous System overhead for an arbitrary 0.95X

applications program

Memory Requirement 12,636 words 5,564 words

,1

6 1

4.0 DETAILED PROGRAM FINDINGS

4.1 CANDIDATE INFORMATION TRANSFER SYSTEMS FOR MULTIMISSION APPLICATIONS

Three candidate ITS have been designed for future applications. They are:
stationary, nonstationary and contention multiple access information transfer
systems. These three ITS are described and compared below. For more detailed
descriptions and comparisons see Appendices A, B, C and D of the first Interim
Report Volume II, and the System Control Procedures and Part One Specifications
written for each information transfer system. Appendix A, B, and C of this
report details the rationale for the system control procedures written for each
of the ITS.

4.1.1 Stationary Master

The stationary master information transfer system (SMITS) is similar to DAIS in
concept. The control site is centralized in one preselected terminal, designated
the master bus controller, and this control point may be relocated to another
terminal, designated the monitor bus controller, in the event of a master bus
controller failure. Some of the advantages of the stationary master ITS are a
simple/reliable BIU, hierarchical architecture capability, minimal risk of
development, control dependability, effective bus capacity, low processor over-
head for synchronous messages, use of the MIL-STD-1553B protocol and similarity
to the DAIS ITS. The DAIS system specifications, and standards already developed
were used as a baseline and were modified to provide the stationary master
concept identified here. Some of the disadvantages of the stationary master ITS
are multimission inflexibility, (because all messages are controlled from a
single PE) and time critical responses. However, the stationary master repre-
sents a low risk to the overall development of an operating system for an
aircraft.

4.1.1.1 SMITS Control Procedures

The stationary master ITS control procedures (CDRL #18, Volume 1) were developed
using the DAIS control procedures as a baseline. SMITS is significantly differ-
ent from DAIS in four main areas:

1) DAIS has a single level bus network, while SMITS has a hierarchical (multi-
level) bus network. The functioning of the two buses intersecting a single
computer is assumed to be completely independent, which implies that there
will be two independent BIUs reporting and operating with two different sets
of minor cycles. The interfaces with two BIUs will involve two sets of
interrupts to be serviced. The executive functions embedded in the PE expand
to six combinations: master/master, master/remote, remote/remote, master/-
monitor, monitor/remote, and monitor/monitor. The SMITS studies, control
procedures, and executive part 1 specification document the master/remote

11

.

combination. The master/master combination may be simplified to run with a
single set of minor cycles for both sets of buses, although a single minor
cycle is not a requirement.

Because the buses are to run independently, a number of assumptions can be
made. The interprocessor service requests will be limited to a single bus
level and any requests made between levels must be made through a service
routine. Similarly message transmissions are limited to a single bus level.
These hierarchical functions impact both the executive software (primarily
master executive) and the associated executive support software (viz.
PALEFAC).

* 2) The DAIS program uses federated minicomputers, while SKITS uses distributed
microcomputers and minicomputers. Distributed processors allow some of the
control to be removed from the master executive to the remote processors.
Future aircraft systems will buffer serial digital interfaces at remote
terminal interfaces by using microprocessors and will not control the
operation of these devices via the bus as was done in DAIS). Similarly, mass
memory control was removed to a remote terminal, so that the master executive
duties are reduced to requesting particular data and waiting until the data
is received. The microprocessor controlling the disk is responsible for the
error responses with respect to any disk control problems, thereby alle-
viating maL. er executive complexity (and centralization of responsibility).

3) DAIS employs its own version of MIL-STD-1553A protocol, while SKITS employs
MIL-STD-1553B protocol. The change in protocol to the current military
standard provided some (but certainly not all) motivation to change the disk
and serial digital channel operations from the DAIS mechanism. The DAIS
method was to provide additional communication via the 1553A status word,
which is forbidden in the 1553B status word. Also affected are asynchronous
messages in general. The SMITS offers asynchronous communications both with
and without a concluding handshake message, and provides the mechanisms by
which the communications can be implemented with each option. SMITS also
allows for the broadcast of messages, but does not use the dynamic bus
control mode codes used in the SMITS.

4) DAIS uses the IBM-DAIS BCIU, while SKITS uses the AFWAL/ADH sponsored BIU
chipset. The two chipset will allow microprocessors (again a small set of
chips) to be interfaced to a 1553B bus with a minimum of expense. One chip
will allow a processor to interface only as a microprocessor, and the two
chips together allows bus control to transpire. This chipset also has a
number of spare bits in its command words so that if it were to be expanded in
capability, it could satisfy another aspect of the multi-mission role being
investigated by the AASMMA study: that of life cycle evolution. For each
different 1553 protocol (e.g. 1553B, 1553A/DAIS, 1553A/B52, 1553A/F-16), if
a bit in the bus channel control word were to specify the variant of 1553
protocol, and interrupt the PE only on a status word indicating an error or
desired service, then equipment from all of the various systems using 1553
could be intermixed using these chips to the master executive to the mixed
equipment bus. Any additional equipment could be added as either 1553B
compatible (as the preferred protocol) or any other 1553 compatible
equipment.

12

Appendix A presents a paragraph by paragraph documentation of rationale for
changes to the DAIS control procedures and for the new and redesigned procedures
which make up the SHITS control procedures.

4.1.1.2 SMITS Executive Functional Description

This section describes the requirements of the SKITS executive as defined in
Volume 1 of CDRL #17. The SMITS executive software is divided into two major
functions: the local executive and the master executive. In general, the local
executive controls processes involved with a single processor, while the master
executive controls processes concerned with the interaction of many processors.
Each bus or bus pair in the hierarchy has a master executive to control the
functioning of the system comunication at that level.

Local Executive

Each of the processors contains a local executive very similar to the DAIS
executive. This local executive controls the state of the realtime entities
existing within its processor, specifically tasks, global copies, and copies of
events (which, like COMPOOL blocks, may exist in multiple copies, one in each
processor within which the event is referenced).

The local executive performs services requested by tasks in realtie statments.
Since a realtime statement executed in one processor may affect the state of a
realtime entity in another processor, the local executive must be able to send
asynchronous messges requesting services in other processors (e.g., to SCHEDULE
a task or update a compool block).

In addition, the local executive must receive such requests from other proces-
sors, and service them properly.

Unlike asynchronous processes, synchronous processes are basically under the
control of the master executive, since synchronization is a process involving all
of the processors on its bus. However, the local executive must also participate
in synchronous processes, by signaling minor cycle events and preparing for the
reception and transmission of synchronous COMPOOL block update messages.

Finally, the local executive must be capable of starting its processor, and of
recognizing and processing errors that may arise.

Master Executive

The master executive controls communication between the separate processors and
remote terminals on its bus. This communication exists only in the form of
messages which can be sent across the bus. Thus, one major function of the
master executive is bus control.

13

Each remote terminal or processor can request to send asynchronous messages.
There are also synchronous messages which must always be sent at a given period
and phase of a minor cycle. Critically timed messages may be sent at a specified
mission time. In addition, the master executive has its own messages which are
used to determine the correct functioning of the processors and RTs on its bus.

The primary function of the master executive is to control the transmission of
these messages. The secondary function is to take corrective action when one of
these messages appears to have been sent incorrectly. The corrective action
taken may be to resend the message under carefully controlled conditions. If
this fails, the error cause is assumed to be hardware which has ceased to
function properly. Either functionally redundant hardware must be invoked or the
scope of the mission must be changed. This is known as system configuration
management. System configuration management keeps track of the status of all
processor and bus-related hardware to be used during this mission, and determines
the operations to perform when a hardware element fails. It may also have to
report these failures and reconfigurations to other buses in the hiera chy.

The master executive as discussed above is a set of functions which exist in one
processor on each bus and possibly within a backup processor. This processor is
called the master processor and the BIU attached to that processor is called the

*• master BIU.

To allow for the possibility that the master processor or the master BIU may
" fail, a second master executive can exist in another processor. This second

master executive is called the monitor executive. The master executive must
periodically send a message to the monitor which informs the monitor that the
master executive is still functioning. If the monitor does not receive this
message, it switches to master executive mode and takes control of the bus. (The
switchover may also be accomplished using discretes between the two bus control-
lers). If the mission is in a noncritical phaso, the monitor will automatically
reconfigure around the failed processor via the warm start phase. The monitor
will take control of the bus and initiate a set of applications tasks and bus
commands to ensure that the bus elements perform the optimum processing possible
under the circumstances. This mode of processing is called degraded mode.
Degraded mode is also entered should the master be unable to reconfigure around a
remote processor/BIU failure during a critical mission phase.

*The purpose of backup mode is to prevent any processing delay caused by a failure
during a critical mission phase. During backup, the monitor processor causes
only certain specified critical functions to be performed. The pilot always has
the option to restart or reload the system by using the processor control panel.

There is a third part of the master executive which is the system loader. The
function of the system loader is to load the mission software from system mass
memory into all the processors within the currently specified configuration. The
system loader receives control of the bus from the ROM which was the bus control-
ler after processor power up.

The ROM loader in each processor gains control of that processor upon power up.
After completing self tests and processor verification, the ROM loader examines
the bus and if it finds no activity it will assume control of the system, thus

14

*1 . . i .. | : " - | " " " " - ° -

becoming the controller. It then polls all processors in the initial configura-
tion to determine if one of the processors has a valid system loader. The ROM
loader will then supervise the loading of its processor with the system loader
from mass memory if a load is necessary. Upon completion of the load or notifi-
cation of a valid load, the ROM then hands control of the system to the system
loader.

If when the ROM loader comes up, the bus is inactive, it will then go into an idle
loop until one of the following happens:

1. Commands are received from another ROM loader.
2. Commands are received from the system loader.
3. A predetermined length of time has passed, in which case the ROM loader will

again attempt to become the controller.

4.1.2 Nonstationary Master

The nonstationary master information transfer system (NSMITS) is based upon
modified SMITS system control procedures. These procedures have been modified to
support a nonstationary master architecture which uses a round robin scheme to
determine the processor that will next control the bus. The NSMITS, like the
SMITS, is an extension of DAIS to allow for MIL-STD-1553B and a hierarchical bus
structure. The result is a system which closely resembles DAIS in its philosophy
and application, but provides additional capabilities for the multimission ap-
plications envisioned for advanced digital systems in future aircraft.

The nonstationary master information transfer system uses a round robin bus
control transfer scheme to provide the system designer increased flexibility in
developing a system which can support any one of several different missions. In
a nonstationary master system, an aircraft can be readied for a new mision (e.g.,
a reconnaissance mission after an attack mission) without modifying any of the
bus control tables or procedures. The only overt action needed to implement the
change is to reload the multimission processor with software appropriate for the
new mission and interconnect the new avionics subsystems. This change should be
completely transparent to the rest of the system. Therefore, all mission depen-
dent bus messages are initiated by the multimission processor when it gains
control of the bus. The multimission processor uses standard bus commands to
collect the necessary data from the other devices on the bus. No changes are
needed in any of the instruction lists or bus control tables resident in the
other processors. Part of the nonstationary philosophy includes a core of
processors which perform the general processing functions and multimission
processors which will be modified as required for new missions. The advantage of
this philosophy is that the core of processors are isolated from the multimission
processors, which minimizes change from mission to mission.

This ITS documented in Task IV differs from the nonstationary master ITS defined
in Task I in the way bus control transfer is performed. The Task I bus control
was passed via a polling mechanism. Instead of polling each potential master to
find the one with the highest message priority, bus control transfer is now
performed in a round robin sequence in which each master transfers control to a

15

predefined new master. Each new master operates as if it were a stationary
master until its transmission interval is complete. The NSMITS control pro-

!. cedures provide for hierarchical bus structures and MIL-STD-1553B. The reason
that the change was made from polling to round robin control was twofold: (1)
the overhead and hardware required to implement a polling scheme is very high,
and (2) the number of bus controllers for feasible multi-mission applications are
two or three in number. Round robin control on such a small number of PEs is much
simpler than polling.

4.1.2.1 NSMITS Control Procedures

The nonstationary master information transfer system control procedures (CDRL
#18, Volume 2) are based on the SMITS control procedures but provide additional
capabilities for multimission applications. Bus control transfer between master
processors on the NSMITS bus occurs in a round robin sequence. One processor,
designated the primary master, performs minor cycle synchronization for the
NSMITS and is responsible for configuration and bus control management for non-
multi-mission-specific equipment. The other master processors on the NSMITS bus
are referred to as secondary masters. One of these secondary master processors
can be designated as monitor and will contain a copy of the executive and
critical application software contained in the primary master.

*i Minor cycle synchronization of the NSMITS bus is performed by the primary master
while it is master mode and is received by the secondary masters while they are
in remote mode. After synchronizing the bus, the primary master begins bus
activity for the minor cycle by executing its synchronous instruction list (SIL).
After the end of the SIL, the low priority asynchronous bus instruction list, and
the status polling list, bus control is transferred to the next processor, and

*the primary master converts to a remote. The next processor then executes its
bus instruction lists for this minor cycle. This process is continued until each
processor in the NSMITS has become a bus controller and performed its required
message processing. The last processor in the round robin chain returns bus
control to the primary master, which waits until the end of the current minor
cycle before starting the new minor cycle. The bus control transfer protocol
uses the dynamic bus control mode code of MIL-STD-1553B. If timing and control
authority is critical with respect to the primary master, then a discrete could

*be extended between the primary master and the other master(s). The discrete
would indicate a subordinate master's BIU must cease transmission because of the
beginning of the next minor cycle.

The primary master also has the function of bus control management. This func-
tion is to monitor the round robin sequence of bus control transfer and determine
the processor at fault if a bus control transfer fails.

NSMITS supports an optional mass memory subsystem to support the capabilities to
. load/reload program modules and mission dependent data and to record data for

post flight analysis. The mass memory for the nonstationary master system is
connected only to the NSMITS bus instead of being an interbus processor as in the
SMITS. This architectural change enhances the multimission philosophy of
NSMITS.

16
+,

, .

NSMITS configuration identification and software module loading occurs in the
lowest bus levels first and proceeds up the hierarchy until the global bus is
identified and loaded. This allows a higher bus level to change its config-
uration based on the configuration of lower levels.

4.1.2.2 NSMITS Executive Desian

This section describes the requirements of the NSMITS executive as defined in
Volume 2 of CDRL #17. The NSMITS executive software is divided into three major
functions: the local executive, the master executive and the system control
executive. In general, the local executive controls processes involved with a
single processor, while the master executive controls processes concerned with
the interaction of many processors. The system control executive is involved in
system-wide management on the NSMITS bus, and has the error management and the
minor cycle control which the stationary master of the SMITS. The local execu-
tive is essentially identical to the SMITS local executive. The master executive
has the same functions as in the SMITS, with the exception that bus control error
handling is included and minor cycle control is executed. The system control
executive software is responsible for overall bus management and for minor cycle
synchronization. Although the SMITS control procedures and executive part one
specification could be described in terms of changes from the SMITS the documents
are fully self-contained. The appendix B discusses some of the specific changes
and the rationale for those changes from SMITS.

System Control Executive

The system control executive will reside only in the primary master processor and
the monitor. Its main function is to detect the failure of bus control transfer
between master processors on the NSMITS bus. Each master processor transmits a
message to the primary as the first step to transfer bus control which updates a
bus control transfer table. When a processor fails to accept bus control, the
failure is updated to configuration management.

To allow for bne possibility that the primary master processor or its BIU may
fail, a second master executive and system control executive can exist in another
processor. This second primary master processor is called the monitor. The
primary master processor must periodically send a message to the monitor which
informs it that the primary master processor is still functioning. If the
monitur does not receive this message, it must switch to master executive mode
and take control of the bus and assume the responsibility of the primary master.
If the mission is in a noncritical phase, the monitor will automatically recon
figure around the failed processor via the warm start procedure. However, if the
primary master should fail during a critical mission phase, the monitor will take
control of the bus and initiate a set of applications tasks and bus commands to
ensure that the bus elements perform the optimum processing possible under the
circumstances. This mode of processing is called degraded mode. Degraded mode
is also entered should the master be unable to reconfigure around a remote
processor/BIU failure durinS a critical mission phase.

17

The purpose of backup mode is to prevent any processing delay caused by a failure

during a critical mission phase. During backup, the monitor processor causes
only certain specified critical functions to be performed. The pilot always has
the option to restart or reload the system by using the processor control panel.

This is called manual reconfiguration.

4.1.3 Contention Multiple Access Information Transfer System

In the contention multiple access information transfer system (CMAITS), there

are no unique bus masters, rather each device contends for use of the trans-

mission media. When a device wishes to transmit, it will sense the communication

activity on the transmission media to determine if a transmission is allowed. If

activity is detected, the device will wait until the transmission ceases, then

the device will begin a random delay associated with its queued message's prior-

ity before attempting to transmit. If the transmission media has remained free

of communication activity for the duration of the delay, the device initiates

transmission. Using this approach, multiple devices can attempt communications

on the transmission media simultaneously. If this occurs, a collision is said to

have occurred, and the transmissions are terminated and rescheduled for trans-

mission later. Once a device acquires the transmission media and begins communi-

4 cation which does not result in a collision, it may transmit until a given length

-of time expires. During this period of time, called the transmission interval,

as many complete contiguous messages as can be transmitted in the time interval

will be scheduled and transmitted.

-The contention mechanism discussed here allows considerable flexibility in sys-

tem integration. This ITS has the advantage of easily providing for new, modi-

fied or multimission oriented sensors. Because of the independent nature of the

processors, modifications to the system will primarily affect the processors

responsible for control of the modified section.

There are several advantages provided by the contention system. The firz. af

these is that the system is the easiest system to add multimission functions.

* .Each new function could accept the core avionics data without impact to the

system, since data is broadcast in a source oriented fashion. The data asso-

ciated with mission specific functions would be generated by contending for the

bus and transmitting the appropriate data to its own subsystems and to inte-

* gration and display functions. The upgrading of an existing contention system,

jby adding new functions, can be done easily because of the asynchronous operation

of the ITS. Functions by necessity and design are as loosely coupled as
possible. This loose coupling will allow for easier upgrade of capability than
systems that are tightly coupled by the information transfer system using syn-
chronously generated messages within a given period of time. This contention

organization also is most closely aligned with the method of integration used

today by an avionics integrator who purchases subsystems and integrates them

using the ITS integration process. Because the contention algorithms are based

on message priority, the highest priority messages can be transmitted within a

shorter time than in other types of multiple control mechanisms. This capability

can be very important in advanced vehicles where rapid responses are required.

18
:I

Several drawbacks to the contention system have been identified. These include
the somewhat asynchronous nature of the system (even using minor cycles). Diffi-
culties occur in the debugging of the system during integration because error
conditions are not easily repeatable. This asynchronous system also could poten-
tially require different control algorithms than are normally used in totally
synchronous systems. These algorithms do not allow the simplifying assumptions
usually made in time dependent algorithms. The advantage of time tagged data is
that it does provide the capability to modify data which is collected syn-
chronously and transmitted asynchronously. The contention system bus allocation
algorithms involve the detection of an inactive bus, a random waiting period and
the transmitting of a message sequence on the bus. This procedure requires less
bus overhead than a stationary master system.

4.1.3.1 CHAITS Control Procedures

This section describes some of the differences between the DAIS baseline and the
contention multiple access information transfer system (CMAITS). The control
procedure document (CDRL #18, Volume 3) is entirely different from the DAIS
control procedure for the simple reason that the contention information transfer
control hardware and software are very much different from those used in the DAIS
program.

The contention system was designed around the concept that the real solution to
multi-mission applications is independence of function. The most independent
set of devices operating in an integrated multiplexing system is a set of devices
which contend for control of the bus when the device has information to transmit.
Once control is obtained, data is broadcast to all devices which have that
message identifier in its receive addresL list. The sequence by which the
various devices assume bus control is random, making each device potentially
independent from all other devices. From these simple assumptions an information
transfer system has been designed. The operation of this ITS will be discussed
below briefly in the three areas of contention access, broadcast control, and
system control, and is discussed in more detail in Appendix C of this report.
The full discussion can be found in the Contention, Multiple Access Information
Transfer System Control Procedure document (CDRL #18, Volume 3).

Contention Access

The contention access portion of the ITS is totally different from DAIS. Whereas
DAIS has a single controller which has absolute authority over the bus, each
CMAITS element may capture control of the bus and hold it for a period of time.
The BIU hardware to perform the control is approximately twice as complex as the
DAIS or SMITS BIU's. The BIU's normal functions must include all those in the
DAIS bus controller plus the following: (1) listen for a quiet bus, (2)
determine whether a message is available to transfer, (3) determine the highest
priority message to transfer, (4) wait until a (random) time has elapsed, based
upon the priority of the message, (5) commence transmission while concurrently
receiving in order to detect whether a transmission is occurring simultaneously,
(6) cease transmission and wait if a simultaneous transmission occurred. The BIU

19

also has additional functions for reception of messages. The BIU must compare
the address on the incoming message with a list of message addresses to determine
whether the message should be accepted by it. If a message is also determined to
be invalid because of bad parity, etc, the BIU may respond with an invalid
message response at the conclusion of the message transmission sequence.

Broadcast Control

The broadcast function is used in the SMITS as an extension of the DAIS bus
control function. It is further extended in CMAITS to include message identifi-
cation rather than source and destination definition. The major impact is on the

* BIU hardware which must be able to discriminate which of the messages are
destined for its PE and then to map the message appropriately into the PE's
memory.

System Control

The control of the CMAITS is not centered within a single controller, although
that option is not excluded. Transmission control is totally distributed because

"4 of the bus access mechanism. The task control, error control and configuration
control are not totally distributed. Because of the synchronous nature of some
of the avionics computations, two or more of the PE's in a CMAITS may wish to
proceed in lockstep via minor cycle synchronization. Therefore, CMAITS can
consist of a number of different PE's each controlling its set of PE's and their
tasks at different minor cycle rates. Each of these computing groups is called a
sphere of control. The same PE performing the synchronization function is also
responsible for the configuration management and error handling of equipment
within the sphere. In many ways, each sphere has the same configuration manage-
ment characteristics as DAIS. However, if a PE fails, the redistribution of all
of the tasks can be accomplished more readily because of the broadcasting of the
messages and content-identification of the messages. Therefore the destination

*of messages do not have to be redefined, but rather only the relocation of
critical tasks.

4.1-3.2 CMAITS Executive

This section describes some of the differences between the DAIS executive and the

requirements for the CMAITS executive as defined in Volume 3 of CDRL #17. The
differences are almost totally in the master executive (bus control) portion of
the executive. The local executive, with its task control functions, remains
very much the same as in the DAIS executive.

The CMAITS executive is a synchronous executive which operates either upon minor
cycle events from a sphere controller or controls its own minor cycles via its
clock. The executive to applications communication interface is the same as in
DAIS. CMAITS may also have distributed tasks which require that the executive
communicate an event set in one PE to the remainder of the PE's, as is done in
DAIS by a set of command/response messages. While this is allowed, a

2

rF20

significantly smaller sized executive can be used for a singular processor which
operates synchronously using its own clock. The master executive BIU controller
is substantially different from DAIS. The BIU interface is different because of
the additional capabilities required in the BIU. Several bus priority
communication lists exist and must be scanned by the BIU between message sequence
transfers. From highest to lowest, the priority of transmission is (1) data
messages in response to request messages, (2) critically timed (trigger)
messages, (3) synchronous messages, and (4) asynchronous messages. The messages
in each of these four comunication lists must be managed by the CMAITS master
executive, while the DAIS executive has only one list which must accommodate all
four types of messages. The executive must also initialize the BIU RAM with all
desired message indentifiers and specify their indexes into the message pointer
list so that each message can be deposited via DMA. Another bit in the RAM will
specify whether the PE should be interrupted upon the arrival of the message. If
an interrupt is caused, an event is created which is passed to the local
executive for action by any tasks waiting on that event.

The error handling of the master executive at the most critical level involves
the cessation of all bus transmissions and interrogation of devices suspected of
failure. Redistribution of functions according to the reconfiguration pro-
cedures are also accomplished by the master executive of both the sphere con-
troller and the individual PEs.

4.2 ANALYSIS OF INFORMATION TRANSFER SYSTEM PERFORMANCE

4.2.1 Message Wait Time

Message wait time or latency is the amount of elapsed time from when a message
becomes ready to transmit in one device to the completion of receipt by a second
device. The analysis will consider a message as being either a time-critical
message (i.e., trigger message) or nontime-critical. In any given system the
trigger message is assumed to be an important component, but will comprise a
small percentage of the total message traffic. A weapon delivery message is an
example of a trigger message. Figures 4-1 through 4-4 show the effect of several
variables on message latency for the three ITS.

4.2.1.1 Stationary Master ITS (SMITS)

When using SMITS the latency of a trigger message is determined by the length of
time it takes for the bus controller to give a particular device the right to
transmit the message request plus the time it takes for the master to handle the
trigger message request and allow the device to transmit the trigger message.
The sequence of events associated with the processing of a trigger message are:

1. Recognition of the service request bit in the status word of MIL-STD-1553B

2 Transmission of mode code to requesting device (transmit vector word)

21

3. Receipt of service vector information

4. Transmission of command requesting device to transmit the trigger message

5. Transmission of the trigger message

6. Reset to normal traffic which has been interrupted.

All six of these activities could (and should) be performed by the bus interface
unit (BIU), however current implementations of BIU hardware lack the required

sophistication. The CPU must be interrupted to handle the service requests
generated in steps 1 and 3 above. The service of a trigger message will require:

2 interrupt services (maybe 1 more for link back to schedule message list)
6 message gaps/response times
7 command/status words/vector
L data words where L is the length of the trigger message

Each interrupt will require the machine state to be saved, the service routine
address to be determined, the service routine executed, and the machine state to
be restored.

A fixed time of 50 microseconds will be used to estimate the processing of each
interrupt. The length of a trigger message is assumed to be 10 words. The
message gap is dependent on bus bandwidth. At low data rates on an optical bus, a
message gap of 4 bit times can be attained. At higher bandwidths, the propa-
gation delay (i us per 300') becomes significant and message gaps must be
increased accordingly. The command, data and status words each require 20 bit
times per word. The total message service time is then:

Message Service Time =2(50) + + (7 = 103 us -

(Equation 1)

*where:
B is the bus bandwidth in MHz. In this report, the term bus bandwidth means

the maximum bit rate on the bus.

The other component of trigger message latency is the delay associated with
obtaining the right to transmit the trigger message. This delay is dependent on
the system configuration and organization. A minimum delay configuration would
allow the polling after every message transmission of all devices that have the
potential for a trigger message. A more reasonable configuration would be to
poll one potential device after each message transmission or to poll each device
one or more times during a minor cycle. For the analysis, the assumption of one
device being polled after each message transmission will be used to illustrate
the minimum potential latency of a SMITS system. If polling is performed on a
minor cycle basis, say once every 7.8 or 15.6 ms, then the latency would be an

*. order of magnitude greater than the system which is polled after every message.
On the average, the device with the trigger message will be the middle one

22

1

z

0
uj Zj

I-A

232

U)
ulM

248

*cc
<8

Iz

zz

zz

o to

zz

258

-8

SU

cc
z ®R
o 4

Za
UA (J

2 26

polled. The required time in this case is (n/2 message times) + (n/2 polling
times), where n is the number of devices with potential trigger messages. Each
polling is made up of a command word and a status response which requires two

essage gaps and two word times. A message time is dependent on the type of
message that is being sent in the system. The message mix that is assumed for
this analysis is shown below:

1. Master - Remote or Remote - Master 50%
2. Remote - Remote 30%
3. Master - Remote (Broadcast) 10%
4. Remote - Remote (Broadcast) 5%
5. Mode Code Without Data 2%
6. Mode Code With Data 1%
7. Mode Code Without Data (Broadcast) 1%
8. Mode Code With Data (Broadcast) __1

100%

The total time to acquire the right to transmit the trigger message is then:

8
(Q 1) M G i + + g[(si +)L +2 (! !) +2 (-)

2

where:
M is the mix percentage
G is the number of message gaps
S is the number of command and status
L is the average message length
B is the bus bandwidth
i is the mix index
Q is the number of potential trigger message devices

The total message latency is the sum of service time and recognition time which
is:

SMITS Latency (us) =

(Q+[1) 8 1,4 20 Q + 1)(Q2 1 i:1 i [Gi (+) + -B (S i + L.) + (Q) (1 +-44) + 103 A(
2 1 L 1 iM 12 3 S 2 1 B ~ B

4.2.1.2 Nonstationary Master ITS (NSMITS)

Message latency for NSMITS is determined by the same message delays as SMITS plus
the delay associated with the transfer of bus control. Because each potential
bus controller does not have knowledge of every device capable of sending a
trigger message, bus control transfer mst occur prior to service of some trigger
messages. The round robin protocol of NSMITS gives the lowest possible trigger

* message service time.

27

8

NSMITS Latency 5(Q 1) Mi Gi (I + 1) - (,+ (Q + 1)
2 i 1 1 2 B B 2

125 4 Q (1 + -) + 103 + 3
B BQ1-).13 B -

5 81 20 ,102Q 2 2
(Q + 1) Mi [G (+ 1) + g (Si + Q + L)] 12 104

4.2.1.3 Contention Multiple Access ITS (CMAITS)

The CMAITS protocol distinguishes trigger (highest priority) messages from other
messages by allowing only trigger messages to be transmitted in the first time
slot available for message transmission after detecting the bus's availability.
This assumes that there are no command-response messages required in the system.
If a trigger message is ready to be transmitted, it will have the first oppor-
tunity to use the bus. Since there are so few trigger messages, the chance of a
trigger message collision is very small. With this scheme the latency of a
trigger message is the time required to detect an inactive bus plus the message
transmission time plus any delays due to collisions. The availability of the bus
can be determined within two propagation delays or 1 us. Message transmission
time was defined earlier in equation 1. Collision delays are a function of the
number of devices capable of transmitting trigger messages and the probability of
a trigger message being transmitted. The expected collision delay is:

2

E(C =, 1 - -] , [+ - (1 - P) Q-1 +

22

[1~1~P~1 3[1- 1 ,P Q1], ° - (1 - +) Q-,]
1[- (1--""")= '

where:

P is the proportion of messages that are trigger messages

Total latency then is:

CMAITS Latency
8

lus 1 M,[Gi (1 +1) - (S, .L) +

S2 B B2

Q- .l P) Q-1] 2

:I

28
I 2

p.28

4.2.2 Information Throughput

The number of 16 bit data words that can be received per microsecond by devices
in the ITS defines the throughput of the ITS. Word overhead, message overhead
and the loss due to collisons reduce the effective throughput of all ITS. Figure
4-5 shows the effect of bandwidth on throughput for the three ITS.

4.2.2.1 Stationary Master ITS (SMITS)

The throughput of the SMITS is computed as the number of messages that can be
sent per microsecond and the percent of data contained in each message. A
message time, as defined in section 4.2.1.1 is:

8 M, Gi + + LO- (Si + L)]
Message Time 1 2 --]

If the average message contains L data words and each 20 bit word contains 16

information bits then the throughput of SMITS is:

16-- Lwords

SKITS Throughput 8 20

i i [Gi (I +) + - (St L)]
i--I~

4.2.2.2 Nonstationary Master ITS (NSMITS)

The same factors that affect throughput of the SMITS also affect throughput of
the NSMITS. However additional overhead is required to accomplish the transfer
of bus control. This transfer requires 5 words and 4 message gaps to satisfy the
transfer protocol and 125 microseconds for a new processor to gain control. This
control transfer will be assumed to be performed after every fifth message
transmission. The throughput of the round robin NSMITS is then:

29

UAj

2 z L
00

z

Uco

030

16
TO L words

Throughput 82 od
M,,,.oo20'. [, + (20)

2=B B (s + L)1+4 (!+!!) +5 +125

4.2.2.3 Contention Multiple Access ITS (CMAITS)

The CMAITS protocol is best suited for systems that are broadcast oriented. The
message mix which is being used in this analysis is nominal for a command-
response system and does not accurately reflect the information handling capa-
bility of a contention system, however this mix will be used to maintain a common
baseline upon which a comparative analysis can be made.

The overhead on the contention protocol includes loss due to collisions. When a
collision occurs, 30 bit times are consumed before the collision is detected and
the message stopped and requeued for later transmission. The probability of the
collision is:

. Q_.. (1 -

Therefore the expected overhead due to collisions is:

B Q- Q

and total average message time is:

G 1 H2_ i I (2 + B B (i B L) + 9-Q - 1 Q1-

The throughput of the contention system is defined as:

16
CMAITS Throughput -L6 L words

81 4 20 S 0 Q

BZ M 0i ~)~ iL B Q-1) Q
i= 3

31

4.3 SINGLE PROCESSOR SYNCHRONOUS EXECUTIVE

4.3.1 Task Purpose

The primary purpose of Task V was to develop a version of the DAIS Executive that
was at least one-third smaller than the original and required less processing
time. Because of the versatility and adaptability of the DAIS executive to many
situations, it is a large program which requires a substantial amount of time to
execute (refer to the final report for the Evaluation of DAIS Technology Applied
to the Integrated Navigation System of a Tactical Transport, AFAL-TR-1061, for an
evaluation of the DAIS executive). In many situations, however, much of this
software is not required; hence a good deal of computer memory and time is
wasted. For example, in a single processor system where the data bus traffic is
synchronous, the DAIS executive is much too powerful and time consuming to be a
practical choice for an executive. The development of a ire compact Single
Processor Synchronous Executive (SPSE) would increase the likelihood that it
might be adopted for use in a new avionics system, either as part of a retrofit
program or as part of a new aircraft.

4.3.2 Task Approach

Work on Task V began with a series of trade studies which were performed to
determine which features of the DAIS executive should be retained in the SPSE.
The results of the studies were documented in the second AASMMA interim report;
these results are summarized in section 4.3.6 following.

Once the executive features were chosen, the approach was to use the existing
DAIS executive documentation and code as a baseline and to work toward the SPSE
documentation and code. Before doing so however, one firm groundrule was
established: only the DAIS System Control Procedures, Part I specification and
Part II specification would change. All other DAIS documentation and standards
would remain in effect. This had two important implications. First, all appli-
cations software tasks designed in accordance with the SPSE Part I specification
can run under either the DAIS executive or the SPSE. Secondly, all of the DAIS
support software tools such as the Partitioning, Analyzing, Linking and Editing
Facility (PALEFAC), may be used without modification.

More specifically, the approach to Task V was to begin with the DAIS Executive
Part I specification and the System Control Procedures and examine each section
and paragraph for applicability. If a section was not applicable, it was
dropped. Only minor changes were allowed on those sections that were retained.
A similar procedure was applied to the Part II specification. Each module, each
entry on the flowcharts, and each data item were examined for applicability.
Once again, only relatively minor changes were allowed on the retained portions.
Finally, the code was modified on the basis of the above changes. All changes
were made while rigidly following the groundrule.

Once the design modifications were completed, the SPSE Part II specification was
reviewed expressly to locate areas where changing the structure of the executive
might result in a reduced memory requirement. Two principal methods for saving

32
I

memory were identified. The first method was to combine two similar but separate
DAIS procedures into a single SPSE procedure. The second method was to eliminate
any procedures which were called by only one other procedure and include the code
inline as a "Macro" in the calling procedure. In order to preserve the original
DAIS mouule definition whenever practical, no structure changes were made unless
the memory reduction exceeded 10 words.

Following the completion of the SPSE design, the SPSE was coded, compiled, linked
with the Model Avionics Program (MAP), and installed in the DARTS Laboratory for
test and debug. Two separate demonstrations were conducted using the SPSE. The
first was in the DARTS Laboratory and was designed to verify that the SPSE could
support the requirements of a typical avionics system. The second demonstration
was held at AFWAL and was designed to show that the SPSE software was transport-
able, that the DAIS executive-to-applications interface had been maintained, and
that the SPSE could pass the DAIS Validation and Verification tests. The vali-
dated software was then delivered to ANAL.

4.3.3 Documentation Produced

A number of documents were generated in support of Task V. The complete list of
these documents is provided in Table 4-1. The AFWAL Review column of table 4-1
indicates those documents which were submitted first as a draft and subsequently
updated before the final document was submitted. In addition, change pages to
the Part II specification were provided after the final draft was submitted.

4.3.4 Support Tools

Early in the Task IV effort, a review of the code development procedure for the
SPSE was made. This review uncovered several potential development problems
which are described in section 4.3.4.1. It was decided that several Boeing-
generated development tools could substantially aid the program development
effort if applied to the SPSE coding process. Two of these tools are SUBSORT,
described in section 4.3.4.2, and Universal Source Files, described in section
4.3.4.3. A third Boeing tool, used to process Universal Source Files is INGEUNS,
which is described in section 4.3.4.4.

33

Table 4-1 TASK V DOCUMENTATION

Document AFWAL Review

SPSE Interim Report No

SPSE System Control Procedures Yes

Computer Program Design Specification

for the SPSE, Part I Yes

Demonstration and Test Plan for the SPSE Yes

Demonstration and Test Procedures
for the SPSE, Group I Yes

Demonstration and Test Procedures

for the SPSE, Group II Yes

PDR Agenda No

PDR Minutes No

Computer Program Product Specification for
SPSE, Volume I: Local Executive Yes

Computer Program Product Specification for
SPSE, Volume II: Bus Control Yes

* CDR Agenda No

CDR Minutes No

SPSE Functional Test Report, Group I No
(DARTS Laboratory)

SPSE Functinal Test Report, Group II No
(AFNAL Laboratory)

3

34
I

4.3.4.1 Potential Development Problems

At first glance, the job of modifying an already existing computer program to
eliminate certain functional capabilities would seem to be almost trivial. How-
ever, this is not the case. Major functional capabilities of the DAIS executive,
such as asynchronous bus communication, are not neatly isolated in one or two
modules, but are spread throughout the program. To cleanly remove this feature
requires modifications to most of the original program modules as well as to the
data base. Because the program changes are so widespread, many potential problem
areas exist during program development. For purposes of discussion here, the
problem areas are broken down into four types:

1) Transcription errors
2) Design integrity
3) Loose ends
4) Laboratory debug

Each of these is discussed briefly below.

Transcription Errors

Transcription errors are introduced at the earliest stages of coding. Because
the new software program is being derived from a previously existing program,
every attempt is made to save as much of that old program as possible. Technical
aides are assigned the task of extracting the desired portions of the original
code and putting it into new source files. Since typing in all of this source
from scratch is impractical, the usual approach is to copy the original file and
delete unwanted lines. The initial output of this task is generally satisfac-
tory, with relatively few errors.

If this were the only time that the original program files were referenced, this
stage of program development would present few problems. Often, however, refine-
ments in the design will require modifications during the development stage.
This often entails returning to those original files to eithmer copy or delete
more material. It is during this process that one or more lines of code can be
either incorrectly added or deleted, resulting in a transcription error that is
hard to detect.

Design Integrity

In order to retain the desirable features of a program that is being modified, it
is necessary to maintain the design integrity of that program. To help insure
the design integrity of the SPSE, it was a requirement that all applications
tasks executing under this executive could execute under the original DAIS execu-
tive as well. Since the operation of the DAIS executive is controlled by a data
base which is built offline, any changes to that data base Must be carefully
controlled. No changes can be made unless the impact can be assessed for all
modules referencing the modified data. To miss checking any of these modules
introduces a risk that the integrity of the data base might be lost.

35

Loose Ends

After the initial version of the new program (in this case, the SPSE) is com-
pleted, it is possible that the design changes to the original program may have
left a number of "loose ends." These loose ends can take many forms, but the end
result is that memory and processing time are being used unnecessarily. For
example, in the original program, the designers may have avoided repetitious
coding of an algorithm used in several different areas of the program by defining
a separate procedure. After the modifications are completed, only one call to
this procedure remains. Memory and overhead can be reduced by rewriting this
procedure as inline code. As another example, one routine may be responsible for
calculating a variable used by another routine. If, after the modifications, the
second routine no longer needs that data, the calculation should be removed from
the first routine. "Loose ends" will not prevent a program from running, but
they can add substantially to the program's overhead.

Laboratory Debug

* The last major problem area is encountered while trying to debug a problem in the
laboratory. This problem is really the result of uncertainty over whether the
three previously described sources of error have been eliminated. If the debugg-
ing programmer has no faith that the original code was transcribed properly or
that data base integrity has been maintained, much of the debugging phase will be
spent in tracing the derivation of the code, rather than in attacking the
observed problem.

These four problem areas exist whenever one program is being derived from
another. It was the desire to reduce the impact of these potential problem areas
during development of the SPSE that led to the use of the Boeing-generated
development tools: SUBSORT, Universal Source Files, and INGEUNS.

4.3.4.2 SUBSORT

SUBSORT takes a list of all parameters used in one routine, compares it with
similar lists for all other routines, and then generates lists of all routines
which reference a single parameter. An example of SUBSORT inputs and outputs is
shown in figure 4-6. SUBSORT can be used either to generate a list of routines
which call each procedure in a computer program, or it can generate a list of all
routines that reference any given parameter.

The inputs to SUBSORT can be readily generated by using the Computer Program
Development Specification oaragraphs on linkages and data which are provided for

* every function. A more direct (and more accurate approach) would be to use the
listings generated by compilation of the source code as the basis for SUBSORT
inputs.

The SUBSORT outputs were the primary means of finding the loose ends in the SPSE.
Several variables which were being maintained in many different routines, but
which were never actually used, were found and eliminated in this manner. In
addition, several decisions to combine two or more routines into a single routine
were influenced by the data produced by this program.

36

A.

4

INPUTS OUTPUTS

0 Procedure is calledby-

SProcmdure A calls A
C

B
Cc S Procedure C is called by-

A

SProcedure B calls

D S Procedure D is called by-

E A

SUBSORT B

0 Procedure C calls

BE Procedure E is called by-E

F B

C

Prcdum F calls

D S Procedure F is called by-

C

Figure 4-6 SUBSORT Inputs and Outputs

37

* The SUBSORT program was also an aid in maintaining design integrity. The data
compiled by SUBSORT made it much easier to locate places where changes to the

*DAIS executive data base could modify or eliminate information being processed in
another routine.

*' 4.3.4.3 Universal Source Files

Universal Source Files (USF) can be used to maintain the concept of a family of
DAIS executives. A USF contains the source code for every member of the execu-
tive family which makes use of the corresponding software module. For example, a
USF for the initialization routine would contain every line of source code that
is needed to generate the specific initialization procedure appropriate for a
single member of the executive family. Each line of code in the USF is marked to
indicate in which family member it is used.

*i A USF is created by executing the USF software program on a source file from the
parent executive. Each line of the original file is padded with five leading
blank spaces. Each of these spaces corresponds to one member of the executive
family. If the line of source code is not used in one version of the executive,
the corresponding space is filled with an X. If a line of code needs to be added
to support a new version of the executive, all of the spaces except the one
corresponding to that version are X-ed out. Although the USF's used to develop
the SPSE can support only five versions of the executive, this limitation is
arbitrary; the same technique can be used to support any number of versions.

The advantages of developing USFs for a family of software programs are numerous.
A complete software package for all versions of the program is contained in one
configuration. A user can tell at a glance which sections of a program vary
substantially from one version to another and which remain fixed. A degree of
configuration management is introduced to software development; by demanding

* that all coding changes be made in a USF, a software manager can ensure that all
coding changes can be easily reviewed by system designers. There is never any
question about whether a section of code is new or whether it has been revised.
Quality control for code can now begin with code generation rather than with
debug and test.

.4.3.4.4 INGEUNS

Since the USF itself cannot be compiled, another development tool is needed to
extract from the USF the source code desired for one version of the executive.
This tool is the INterpreter for Generating Executives from UNiversal Source
files (INGEUNS). The input to INGEUNS specifies which USF file is to be

1 processed and which version of the executive is desired. The output is a
compile-ready source file for the selected executive. An example of how INGEUNS
might be used to generate individual source files from a USF is shown in figure
4-7.

By using INGEUNS in combination with the USFs, many potential development prob-
lems can be controlled. Since all versions of the software are contained in one

* configuration, transcription errors, while not eliminated, become very easy to

38

1.

j
IA.

0

~Z

Eg I- U

U,

a a

u
3Z

JAJ

Z Z
Zf 0= cc-

mS W~ o, cc~ I 0ccc

Sa zdo
a 6 ! 3 2 t 4 I -

Im
x3I x

3SdIS x x
.j

Siv x 1 JU
us 2CJ4
jbE Zz-~-

616 =U

U.4
UAa

.3 aCj

rx

39

track down and correct. Design integrity is assured since the basic framework of
the software program remains intact in the USF. The task of debugging and
testing the latest version of the program is greatly simplified because
laboratory personnel can concentrate on just the areas of code that have changed.
A glance at the USF is sufficient to determine if the code in question is new,
modified, or unchanged from another, previously verified, member of the family.

While the use of USFs and INGEUNS was very beneficial in developing the SPSE,
these development tools were not entirely without cost. The use of USFs added
significantly to the software storage requirements for the development of the
system. For the SPSE, a reasonable working estimate is 65% for the overhead of
building and saving USFs. The USF listings must also be maintained in reference
documents. Finally, the technical aides responsible for software coding needed
additional training. The natural inclination of a technical aide to bypass
updating the USF and make changes directly in the source file must be countered.
At the very beginning of the software project, rigid procedures were established
to ensure that all software modifications were done in the USF. The benefits of
using USFs were so great, however, that these additional development costs became
insignificant.

* 4.3.5 Description of SPSE

Using the software tools described in the previous section, the SPSE has been
built, debugged and delivered to AFWAL. By using the development tools described
above, laboratory debugging was completed in two weeks.

The features of the original DAIS executive and the SPSE are compared in table 3-
1. Although many of the original executive features have been eliminated from
the SPSE, the basic framework of the DAIS executive has been retained unchanged.
Any applications task which will run under the SPSE will also run under the DAIS
executive; that is, the executive-to-applications interface has not been
changed. All other DAIS standards were maintained in the SPSE, as well. The
SPSE is coded in J73/I, operates in a DAIS processor using the standard instruc-
tion set, and communicates with remote terminals on a MIL-STD-1553A bus. All of
these standards are shared with the parent DAIS executive.

The primary result of developing the SPSE has been the development of the second
member of a family of avionics executives. The DAIS executive is well suited to
large multi-processor systems which need to operate in an asynchronous environ-
ment. The SPSE is intended for use in small single processor systems which

* cannot afford the memory requirement of the DAIS executive.

4.3.6 Comparison of DAIS Executive and SPSE

Many of the changes in the SPSE code involved removing a capability from the DAIS
executive. (The other changes, described in section 4.3.7, were made to reduce
the memory requirement by implementing a capability in a different manner). This
section provides a list of the major DAIS executive features that were eliminated

'4 from the SPSE; the reasons for deleting each item are briefly described.

40

4B

Asynchronous Bus Comunications. This is the most costly single feature of the

DAIS executive. Not only does it require several thousand words of memory, but

the associated processing time is substantial. According to the evaluation of

the DAIS executive documented in AFAL-TR-1061, the typical asynchronous bus
communication requires 1.5 ms to service; the worst case is a trigger which
requires nearly 3.0 ms to service. (These times are the combined service times
required for the executive in the originating processor and the executive in the
receiving processor.)

Many,.system can be designed to handle all processing requirements with only
synchronous bus transmissions. The original motivation for building an SPSE was
to develop a smaller executive which would support these synchronous systems.
The elimination of asynchronous bus communications was the only predetermined
modification to the DAIS executive.

Multiple Processor System. Since the impetus for reducing the size of the DAIS
executive was the desire to tailor it for use in small systems, elimination of
multiple processor capability was a prime consideration in the new executive.
The only issue was whether the new executive could be designed in a manner that
permitted the easy inclusion of multi-processor capability in a synchronous
system. A trade study showed that the multi-processor feature was closely tied
to the availability of asynchronous bus communications. A synchronous system
that supported multiple processors could not be designed without substantially
altering the structure of the executive. Even if this change were made, the new
executive would be only slightly smaller than the original DAIS executive. For
these reasons, multi-processor capability was excluded in the new executive.

Broadcast. The broadcast feature is used either in a multiple processor system
or for asynchronous updates to multiple RTs. Since the SPSE can be used only in a
single processor system which does not support asynchronous bus transmissions,
broadcast was eliminated.

Trigger. The trigger capability is inherently asynchronous. Even in a system
which supports asynchronous transmissions, the additional 3 s of executive
processing time is very costly overhead at a time when critical applications
processing might be required.

Forced Read. This feature is also asynchronous.

Terminate. The terminate statement allows a controller to put an applications
task into an uninvoked, inactive state. Such an action is usually based on the
receipt of an asynchronous event. In a single processor synchronous system, few
events are expected to occur asynchronously. If the terminate option must be
provided, it can be simulated by cancelling and then immediately rescheduling the
task. The benefit of including the terminate feature was judged insufficient to
Justify the memory required to support it.

Time Wait. A time wait allows a task to suspend itself for a fixed period of
time. This feature was judged to be of little value in a single processor
synchronous system. As with the terminate feature, the benefit of including the
time wait feature was judged insufficient to justify the memory required to
support it. In contrast to the terminate, however, there is no alternate means
of simulating a time wait other than replacing it with an event wait which would
be satisfied upon receiving a signal from a task which is activiated periodically

41

* :and generates a signal when a counter reaches a certain value. It is possible
that this cumbersome method might cause certain applications programs to add more
memory to a system than was saved by eliminating time waits. In that case, this
decision may have to be reviewed.

Sensitive Terminal. By designating a terminal to be sensitive, the executive
performs a careful retry whenever a transmission error is detected. The need for
such a feature is minimal in a synchronous system.

SIL Done Event. The principal use of a SIL Done Event is to notify the system
when asynchronous bus activity will not affect synchronous bus activity. Other
uses of the SIL Done Event were judged insufficient to justify the memory
requirement for the option.

Bit and Word Masking. Terminals presently available to system designers do not
support this option and MIL-STD-1553B precludes the use of this option. There-
fore, software support does not seem warranted.

Nonstandard Device Handler. Nonstandard devices are not expected in systems
which might use the SPSE.

4.3.7 Modifications to DAIS Executive Structure

In addition to removing features from the DAIS executive, the DAIS executive
structure was modified in the SPSE whenever substantial memory savings were
possible. The structure changes were of two forms:

(a) Combining two similar routines into a single routine, and
(b) Rewriting a procedure called from only one location as inline code.

The first structure change was followed for the signal, read, and write routines.
Explicitly, the DAIS executive normal mode signal routine and privileged mode
signal routine were combined into a single SPSE signal routine. The DAIS execu-
tive normal mode read routine and privileged mode read routine were combined into
a single SPSE read routine. The DAIS executive normal mode write routine,
privileged mode write routine, and local copy override routine were combined into
a single SPSE write routine. The seven original DAIS executive routines occupied

*798 words of memory. The three SPSE routines require only 344 words of memory
for a savings of 454 words.

The second structure change was followed for four DAIS executive routines. The
task termination routine was made inline code in the cancel routine, the task
schedule routine was placed in the schedule routine, and the minor cycle setup
routine and the dispatcher were placed in the local executive controller. These
modifications saved almost 100 words of memory.

4.3.8 Modifications to the Data Base Structure

In the quest to minimize the SPSE size, the data base was modified whenever
memory savings were possible. Changes were made to both the internal executive
data and the external PALEFAC Mission Data (PMD) files.

42

K"
Changes to internal data involved removing items no longer needed by the execu-

tive and reducing the size of queues. The run queue was reduced from ten entries

to six and the input queue was reduced from twelve entries to six.

Several data items defined in the PMD files are no longer used in the SPSE. Since
no PALEFAC modifications were undertaken in the Task V, any changes made to the

PMD files must be handled by editing the PMD files produced for any applications

program. Table 4-2 lists the tables and items that must be deleted from the PMD
files when linking them to the SPSE. These deletions save a total of 43 words.

Two additional changes in the PMD were made to support the laboratory testing of

the SPSE. The first was adding a halt to the idle polling list to institute

single pass idle polling. The second was adding an RT to the minor cycle polling
list to synchronize the simulation system with the SPSE.

4.3.9 Demonstration Results

Once the coding and debug phases were completed for the SPSE, the executive was
demonstrated at both Boeing and AFWAL. The Boeing demonstration was conducted in
the DARTS facility on 5 March 1980. The AFWAL demonstration was held at WPAFB on
2-4 April 1980.

The DARTS demonstration consisted of monitoring the processing which occurred in
a single load module while MAP was requesting services from the SPSE. The
demonstation was a complete success with every test showing that the executive
was working properly.

The AFWAL demonstration was in four parts with each part requiring a different
load module. The first load module was a re-creation of the one used in the DARTS
lab. The second was the MAP software linked to a single processor version of the
DAIS executive. The third was the MAP software partitioned for a two processor
system and linked to a two processor version of the DAIS executive. The fourth
was a modified version of the DAIS Validation and Verification (V&V) program
linked to the SPSE.

The AFWAL demonstration was hampered by technical difficulties which prevented
the use of the Bus Monitor Unit (BMU) for recording bus traffic. To compensate
for the problem, the Universal Remote Terminal (URT) was used to display a
limited set of bus messages and count the number of times they were transmitted.

Two software problems were uncovered during the AFWAL demonstration. The first
problem was the failure of the two processor MAP system to activate tasks in the
remote processor. Since MAP functioned properly in a one processor system linked
with either the SPSE or the DAIS executive, the failure was presumed to be tied
to either a data base problem or to the remote executive. For this reason, the
failure was determined to have no effect on the evaluation of the SPSE or MAP
software.

43

Table 4-2 PMD DELETIONS IN SPSE

PMD File DATA Type Name

PMD020 ITEM PSMAXBUSY

PMD020 TABLE PFASYH

PMD020 TABLE P3MRDT

PMD020 ITEM P3MRDN

PMD020 TABLE FlMIST

PMD020 TABLE PSMINK

PMD029 ITEM P3SDEO

PMDO29 ITEM PSLSYN

PMDO29 TABLE PSSYNP

PMD029 TABLE PSSYNX

PMD029 ITEM PSNP

PMD029 TABLE PSTOAD

PMD029 ITEM PXSNAK

44

Ii

The second software problem was uncovered while trying to run the SPSE with the
V V program. The SCADU was used to determine that the problem was in the event
handling routine of the SPSE. An SPSE design decision to combine the task
activation event handling routine with the event handling routine was in error.
The routines were immediately recoded in their original form and a new SPSE/V&V
load module was created. This load module worked as 'expected and the SPSE passed
V&V.

The AFWAL demonstration successfully verified the SPSE code, the transport-
ability of the software, and the adherence of the SPSE to the DAIS executive-to-
applications interface standard.

4.3.10 SPSE Performance

The Boeing and AFWAL demonstrations verified that the SPSE code satisfied the
design requirements. All features of the SPSE described in the Part I and Part
II specifications have been supplied in the delivered software.

The delivered size of the SPSE is 5564 words. This compares to 12636 words for
the DAIS executive. Figure 4-8 shows how the estimated size of the SPSE varied
as the design stages progressed. The SPSE has the unusual distinction for a
software program of getting smaller during all phases of the effort.

Only crude timing figures can be provided for the SPSE. Two data points are
available. When MAP is run under both the DAIS executive and the SPSE, the SPSE
system runs approximately 5% faster. When identical versions of the V&V are run
under both the DAIS executive and the SPSE, the SPSE system is 35 to 40% faster.
The primary difference in the two.applications programs is that MAP makes rela-
tively few executive service requests while the V&V does very little except
request executive services. The implication is the SPSE overhead was reduced
only slightly for periodic services such as minor cycle setup, but that major
improvements were achieved for asynchronous services such as signals and writes.

45

12,638 DELIVERED ALPHA 10

12.000

10.000

8,424
8,000

MEMORY
REQUI REMENT

4.000

0 ORIGINAL GOAL 8O CR DEVRD
12/3)

DATE OF SPSE SIZE ESTIMATE

Figure 4-& SPSE Memory Requirement Versus Time

* 46

5.0 RECOM4ENDATIONS

The AASMMA program has provided a strong engineering baseline from which to
support further work on executive software for avionic applications. The two
principal achievements of AASM9MA have been to define the basic approach to
developing an architecture for multimission applications and to produce a com-
pact tested version of the DAIS executive, the Single Processor Synchronous
Executive (SPSE). The logical extension of this effort would be to restructure
the SPSE to support multimission applications. The job of restructuring the SPSE
can be conveniently broken into two tasks: the first task would be to convert
the SPSE to an operational flight program (OFP) executive; the second task would
take the SPSE OFP as a baseline and develop a hierarchical executive based on a
stationary master architecture where all bus communications are synchronous.

The first task of converting the SPSE into an OFP would consist of several
subtasks:

1. Convert from MIL-STD-1553A protocol to MIL-STD-1553B protocol.

2. Convert to a MIL-STD-1750 machine (i.e., convert from the AN/AYK-15 to the
AN/AYK-15A).

3. Conve-t to the MIL-STD-1589A Higher Order Language (i.e., convert from J73/I
to J73).

4. Enhance the error handling capabilities of the SPSE.

5. Implement a startup/loader function.

6. Provide for backup bus control.

7. Enhance performance by reducing size of the data base and decreasing the
overhead.

The first three subtasks update the SPSE to conform with the latest applicable
military standards. The next three subtasks upgrade the SPSE from a strictly
laboratory too] to a program capable of being an OFP. The last subtask is
designed to enhance the attractiveness of the SPSE to designers evaluating execu-
tive options for new systems.

The second part of restructuring the SPSE would be to take the SPSE produced in
Task I, study the best means of adapting it to a hierarchical architecture, as
produced in Task IV of the current study, incorporate the study results in a
design specification, develop a product specification, code the executive and
test it. The principal problems to be solved before completing the hierarchical
design specification would be to:

1. Define the procedure for interfacing with two buses in a single processor.

2. Isolate the two bus control modules to prevent mutual interference.

3. Determine which executive routines can service the needs of both buses as a
single module.

47

4. Develop a means of transferring data from one bus to the other.

5. Determine how applications tasks in the processor can be linked to either
bus, as the system designer chooses.

6. Establish a design which will support multiple failure modes. As an example,

a processor which was initially serving as the master processor on one bus

and the remote processor on the other bus should be capable of the following
recovery modes:

a. Function as the master processor on both buses if the remote has a
monitor function which takes over when the master processor on that bus
fails.

b. Function as a single sub system if either one of the buses completely
fails.

7. Design the support software necessary to automatically create the data base
for a hierarchical system.

Once thse problems were solved, the resulting hierarchical system could be
* developed into an OFP.

Upon completion of these tasks, AFWAL would have three different avionics
executives:

1. DAIS - for large avionic systems requiring multiple processors and asyn-
chronous communications on a single bus.

2. SPSE - for less complex avionic systems operating in one mission computer and
requiring only synchronous communications on a single bus.

3. Hierarchical - for distributed avionic systems which use several buses to
achieve multimission capability.

Each of these executives would conform to the requirements of the DAIS executive-
to-applications interface standards and all applicable military standards
(MIL-STD-1553B, MIL-STD-1750, and MIL-STD-1589A). The concept of a standardized
approach to the definition and development of an avionics executive would then be
firmly established.

In order to anticipate the requirements for avionic systems in the late 1980's,
two additional tasks should be undertaken. The first task is to convert one of
the three executives into the ADA language. This task would uncover potential
problems in applying ADA to the existing executive design and would also test the
validity of the executive-to-applications interface standard when used with

* another language. The second task would be to target one of the executives to
microprocessors. This task would highlight any difficulties in using micro-
processors to control bus communications. The SPSE is the preferred executive
for use in both of these tasks since it is the least complicated of the three
alternatives.

4

48

1

APPENDIX A
RATIONALE FOR STATIONARY MASTER INFORMATION TRANSFER SYSTEM

CONTROL PROCEDURES

The stationary master information transfer system (SKITS) was designed using
DAIS as the baseline. SKITS is significantly different from DAIS in four main
areas.

(1) DAIS has a single level bus network; SKITS has a hierarchical (multi-level)

bus network.

(2) DAIS uses federated minicomputers; SKITS uses distributed microcomputers.

(3) DAIS employs its own version of MIL-STD-1553A protocol; SMITS employs
MIL-STD-1553B protocol.

(4) DAIS uses the DAIS-specific BCIU; SMITS uses the AFWAL/ADH sponsored BIU
chipset.

The SKITS control procedures document was written using the DAIS control proce-
dures as a starting point. This appendix documents the rationale for changes to
the DAIS control procedures and for the new and redesigned procedures which make
up the SMITS control procedures.

The paragraph numbering in this appendix corresponds directly with the paragraph
numbering of the SMITS control procedures. For example, the rationale for
paragraph 4.3.1 of the SKITS control procedures is contained in paragraph 4.3.1
of this appendix.

49

3.0 SMITS SYSTEM OVERVIEW

This paragraph was revised to describe the SMITS architecture which consists of
distributed microprocessors arranged in a hierarchical network. The SKITS is a
MIL-STD-1553B multiplex system.

3.1 GENERAL DESCRIPTION

This paragraph describes the SKITS network of microprocessor/BIU's arranged in a
hierarchical fashion.

3.2 CORE ELEMENTS

A typical stationary master hierarchical system architecture is presented, which
is markedly different from DAIS because of the multi-level network.

3.2.1 Bus Interface Unit (BIU)

In this paragraph, the AFWAL/ADH BIU chipset is specified, instead of the DAIS
BCIU.

3.2.2 Remote Terminal (RT)

This paragraph describes stand-alone and embedded RT's applicable to the micro-
processor based subsystems which form SKITS.

3.2.3 Processors

This paragraph suggests the use of commercial microprocessors or MIL-STD-1750
military machines.

3.2.4 Mission Software

This paragraph was changed to delete the reference to OFP and OTP being select-
able by the startup/loader program. In the SKITS, the OFP and OTP would be
different mass memory loads and the startup/loader would load the system with
whichever program (OFP or OTP) was in the mass memory.

50
-!

3.2.4.1 Executive Software

The master and local executive descriptions are similar to the DAIS equivalent
except for the explanation concerning the portions of each executive which will
be in various processors (master, remote, monitor or interbus). These explana-
tions are now based on the hierarchical network function of the particular
processor. Memory protection and local error handling functions were added to
the local executive. Many of the future avionic processors will have extended
memory mapping (see MIL-STD-1750A) and memory protection.

3.2.4.2 OFP Application Software

The only change was to delete the subsystem status monitor as a separate func-
tional category and to make it a part of configuration management. A function of
configuration management is to maintain an account of errors for each specific
system. The subsystem status monitor will remain as a "separate" function, but
is included in configuration management.

3.2.4.3 OTP Applications Software

The OTP is hardware configuration dependent.

3.2.5 System Mass Memory

The main change in this top level description is that the mass memory will be
accessible from two bus levels (a global and a local level).

3.2.6 Processor Control Panel

The panel was changed mainly to eliminate the separate power enable buttons for
each bus side and processor. As the complexity of the distributed system grows
in terms of number of processors and levels of hierarchy, it is obvious that the
pilot cannot be required to monitor the performance of each bus, bus side, and
processor. The software itself will make most of the configuration decisions and
implement those decisions automatically, without the previous tedious and error-
prone procedure of "advising" the pilot of status and waiting for his manual
inputs. As the distributed architecture evolves, more redundant capabilities
will be available. To make full use of these capabilities will require automatic
reconfiguration with minimal pilot interaction. The power switches are normally
circuit breakers which are part of the overall avionic system configuration.

Another change was to eliminate the "ground/inflight" switch on the PCP. In its
place, a "weight-on-gear" switch will be provided to reflect the vehicle position
automatically. Again, this was an effort to free the pilot from unnecessary
manual actions.

51

The "START" switch was changed to "RESTART." The pilot powers up the processors
via the "POWER" button, then presses the "LOAD" button. The processors then
begin execution as soon as they are loaded and have established a good configu-
ration.

The "OTP/OFP" switch was eliminated because it was felt that the OTP would not be
available from the OFP system mass memory. If the OTP were to be run, it would

v- most likely be invoked from a separate mass memory "cartridge" via the LOAD
button or to be loaded through the automatic ground equipment (AGE) interface.
An alternative mechanism to load the OTP if the OFP is operational, is to load
the OTP into high-memory via the mass memory interface, and for the executive to
invoke that OTP as another "task".

L.

.52

4.0 SYSTEM CONTROL PROCEDURES

This introductory paragraph lists the system operational modes, which are very
similar to DAIS. The procedural differences between SMITS and DAIS show up in
the detailed rationale which follows.

4.1 SYSTEM STARTUP/RESTART OPERATIONS

The major change to this section was to remove the system configuration from the
control of the pilot. As explained in the rationale for the changes made to the
PCP, it was felt that the pilot must be freed from the responsibility of monitor-
ing the performance of a complex distributed processing system. The operational
software itself must make and implement decisions regarding the configuration.
The pilot will be kept informed of these decisions, but will not normally be
required to take part in them.

4.1.1 Normal System Startup

4.1.1.1 Startup Self Testing

The startup self testing routine resides in each processor's memory. It is
invoked when the LOAD button is pressed as well as at power up including after a
power transient. This change was made to simplify the entire startup/restart
process by limiting the number of alternate paths. The processor always invokes
its ROM to start or to do a cold restart. Once a technology such as shadow memory
becomes available, the loader and self test could be written over during the
course of normal operation.

4.1.1.2 Bus Control Arbitration

The interbus processor is required to interface to the startup/restart opera-
tions of both bus levels. The bus control arbitration procedure was also changed
so that if the bus controller cannot obtain a verified system loader in its own
memory, it will simply allow another processor to take control. This change was
made to simplify this procedure by eliminating the possibility of having the bus
controller and system loader in different processors.

4.1.1.3 Configuration Identification

The main changes were in response to the PCP changes explained earlier. An
additional change was made to respond to a failure of an attempted warm start.
In this case the configuration identification procedure will proceed to the
software verification/loading process instead of attempting to warm start again.

53

* This procedure is done in order to avoid a non-productive infinite loop between
the warm start and configuration identification procedures. If a warm start

* fails for an inflight restart, a cold start should be attempted unless the
mission is in a critical phase.

4.1.1.4 Software Verification/Loading

If the bus controller cannot verify that it has a correct load module after three
attempts to load it from mass memory, it will relinquish control of the bus.
This change acknowledges the fact that a faulty processor should not control the
bus. After two attempts to verify a configuration, the warm start procedure is
invoked to attempt to Identify and use an alternate set of load modules. This
procedure avoids an infinite loop of attempting to verify a particular set of

*load modules and processors.

4.1.2 System Restart

The design of the system restart/warm start is a function that is controlled by
I the system designer and must reflect the actual needs of his aircraft, as is the

case with all of the other error handling and recovery software. These
algorithms show one particular mechanism to eliminate pilot interaction in this
hierarchical system.

4.1.2.1 System Warm Start

The major change is in the action to be taken should all attempts to warm start
all available load sets fail. To illuminate a light to alert the pilot and to
attempt a warm start again is a hopeless gesture. Instead, the action taken
hinges on whether the current mission phase is critical. If it is and a monitor
is available, the best course of action is to direct the monitor to take control.
This monitor switch provides the fastest recovery possible. If the current
mission phase is not critical, then the best course of action after a warm start
failure is to force software verification/loading and cold initialization to
take place, as if the RESTART button were pressed while on the ground.

4.1.2.2 Pilot Initiated Restarts

These procedures were changed to reflect the modified PCP and to make them as
4 simple as possible. "Background reloading" was eliminated as being too complex

to implement with much success. With the software making most reconfiguration
decisions and keeping the pilot informed of the system status, it was felt that
the RESTART and LOAD buttons would only rarely be used and could best be imple-
mented by simply causing each processor to invoke its ROM. In this way no
software is duplicated between the startup and restart procedures since the
software is common to both.

54

4.1.. System Mass Memory Protocol

Changes were made from DAIS to give the mass memory controller more processing
capability to simplify the master executive. Under the DAIS concept, the master
executive is required to search the mass memory directory with READ commands to
find the desired file. SMITS procedures specify that the file name be passed to
the mass memory controller and then it searches the directory to find the file to
perform the required operations.

The additional processing capability of the mass memory controller is also used
to make mass memory access faster. To do this, advantage was taken of all of the
subaddresses available in the mass memory controller. A file longer than 32
words can be accessed by a single command using successive subaddresses to read
or write the information. The mass memory will read or write up to twenty-nine
32 word messages as a single transaction.

Also, to make the mass memory access faster, ,the executive preprocessor should be
used to build synchronous bus instruction lists for each mass memory read or
write required during the mission to eliminate the asynchronous method used by
DAIS.

The communication with a mass memory will also have to be potentially used at
very low levels of hierarchy on buses that do not interface directly with a mass
memory unit (MMU). In these instances the higher level multi-bus interface will
have to simulate a MMU during loading, so that data can be acquired and then
passed through to next level.

Note that polling of the device can be done periodically following the request to
read/write. The asychronous request vector can be set when the MMU grants access
and is ready to communicate. It can do a second asychronous request vector when
the I/O is complete.

Decentralized processing allows for the removal of most of the mass memory
control from the executive and move it to the mass memory controller micro-
processor for the following reasons:

(1) Mass memory unit (MMU) control for errors are best handled at the MMU,
especially those concerned with characteristics of the device.

(2) The master should be concerned with only assuring that messages get trans-
mitted between requesting PE and the MMU. Auto-retries from transmission
problems should be handled via the normal procedures. The object is to
create a MMU which appears to be an RT in all transmission respects. Con-
sequently 29 subaddresses are allocated for data to be input or output. This
large number of subaddresses permits sequential and uninterrupted transfer
of data of up to 928-16 bit words and remain within the MIL-STD-1553B format.

(3) Asynchronous messages, requests, and interrupts should be minimized. The
communication is considerably simplified with the control technique defined.

55

4.2 PREFLIGHT/POST FLIGHT TEST OPERATIONS

This procedure is the same as in DAIS.

4.3 NORMAL SYSTEM OPERATIONS

The description of paragraph 4.3.9, Power Control, was deleted from this section.
The subject of power control (i.e. recovery from power transients) was TBD in the
DAIS control procedures and is not included in the SMITS control procedures.

4.3.1 Bus Control Operations

The text of this section was modified to refer to MIL-STD-1553B and the AFAL/ADH
BIU. BCIU references were changed to conform the operation of the BIU. DAIS
mode command references were changed to 1553B terms or eliminated. An explana-

*tory sentence was added which stated that: "In general, asynchronous operations
are not given priority over synchronous operations." The reason for this state-
ment was a desire to save overhead by classifying asynchronous messages as high
or low priority. Potentially there will be no high priority messages that will
require the interruption of normal processing. The high priority messages would
still be performed immediately, but the others would be queued into a low-
priority asynchronous bus list to be performed after completion of the syn-
chronous bus list. Message transmission during a minor cycle was changed signi-
ficantly from DAIS to reflect high priority asynchronous messages interrupting
the synchronous bus list, a separate low priority asynchronous bus list, a
polling sequence where each terminal is only polled once, and dead hus time
(except for critically timed messages) until expiration of the minor cycle to
reflect the diminished emphasis on asynchronous messages. MIL-STD-1553B com-
mand, status and data words are presented. The 1553B status word was adapted for
SMITS by not implementing the instrumentation bit, broadcast command received
bit and dynamic bus control acceptance bit. The instrumentation bit was not
implemented because it would restrict the number of usable subaddresses to 15 by
forcing the first bit of the subaddress field to be 1" in all command words. The
other two status bits were not used because broadcast and dynamic bus control are
not implemented in the SMITS. A bit by bit definition of the instruction word
format used by the BIU is also presented.

4.3.1.1 Minor Cycle Synchronization

The hierarchical buses are independent with respect to minor cycle, since the
subsystems on each bus will likely have different timing (cycling) requirements.
Since the interbus processor must be involved with the processing of each bus to
which it interfaces, it will need to respond to the minor cycle synchronization
demands of both buses.

56

I .

K- 4.3.1.2.1 Synchronous Bus Message Operation

This paragraph was modified to reflect the fact that only high priority
asynchronous messages will interrupt the synchronous bus list. DAIS BCIU refer-
enoes were changed to BIU. BIU "NO-GO" and "Busy" states were used rather than
BCIU "quiescent" and "pseudo-wait" states. The BIU BIT word and 1553B status
word definitions caused changes to the procedure flows.

4.3.1.2.1 Processor/BIU OKA Sequence (Master Mode)

This paragraph was completely rewritten based on the operation of the BIU in the
master mode. A new figure depicts the operation of the BIU/processor interfaces.

4.3.1.2.2 Processor/BIU DMA Sequence (Remote Mode)

This completely rewritten paragraph presents the operation of the BIU in remote
mode.

4.3.1.3 Asynchronous Bus Message Operations

The asynchronous operations have been almost completely redesigned for the
SKITS. The three main reasons for this redesign were (1) the change from
DAIS/1553A to 1553B, (2) the change from the DAIS BCIU to the AFWAL/ADH BIU and
(3) the assumption that most asynchronous operations have lower priority than
the SIL.

4.3.1.3.1 Interprocessor Asynchronous Messages

Two possible implementations of asynchronous interprocessor operation are dis-
cussed, the first having a final handshake message. This implementation incor-
porates hardware characteristics of the BIU as well as 1553B protocol. The
requested asynchronous operation does not cause the remote processor or terminal
to advance its asynchronous receive or transmit queue. This allows message
retries to be performed without first realigning the remote processor's asyn-
chronous queue for each retry. The flow finishes with the master sending a final
handshake message (to the remote's subaddress 30) which causes the remote to
advance its asynchronous queue, thereby also notifying the remote's host that the
asynchronous operation was successfully completed.

The second method of asynchronous interprocessor operation is one without a final
handshake. Unlike the first flow, the accomplishment of the asynchronous message
automatically advances the remote's asynchronous queue. This allows the next
asynchronous message to request service, without the need of a final handshake to

57

advance the asynchronous queue. The drawback to this method is that if a message
* error occurs in the asynchronous operation, the remote's asynchronous queue will

now be pointing beyond the message which must be retransmitted. To effect a
retransmission the master must send a special "realign" message to the remote
before each message retry. To transmit the "realign" message would require an

* interrupt to the master processor each time thereby having a significant time
penalty.

4.3.1.3.2 Critically Timed Asynchronous Message Operation

This operation remained similar to the DAIS equivalent.

4.3.1.3.3 Remote Terminal Asynchronous Operation

This paragraph was rewritten to incorporate changes due to 1553B, the BIU and a
redesign of the RT serial-digital channel operation. A subsystem sends data to
its RT, and the RT sets the service request bit in its status word register and
loads the subsystem's vector word in its mode data register. Based on the vector
word the master decides whether to perform the operation immediately or whether
to add the operation to the low priority asynchronous bus list. The message

operation may involve any subaddress in both master and RT; however, if subad-
dress 30 is used, that unit (master or RT) will receive an asynchronous interrupt
to inform the unit that the operation has been completed or that data is
available. An optional handshake message to the RT subaddress 30 (and if desired
from master's subaddress 30) can signal the RT to perform functions such as
restarting a serial-digital channel which was locked out during the current
message operation, or telling the RT to realign its asynchronous queue to
retransmit a message because of a message error.

4.3.13.4 Status Polling

This paragraph was changed: (1) to reference the BIU, (2) to reflect the
addition of a low priority asynchronous bus message list after the SIL and before
status polling, and (3) to change polling to be accomplished once to each
terminal and the bus remain quiet (except for critically timed messages) until
the beginning of the next minor cycle.

4.3.2 Mode Command Operations

This section was completely rewritten to define the mode codes implemented in the
SMITS. The rewrite was caused by the change to 1553B defined mode codes, and
their specific implementation by the AFWAL/ADH BIU. A subset of the 1553B mode
codes was chosen to provide all of the capabilities required by the SMITS. The
selected mode codes are listed and defined in the control procedures. Several
1553B mode codes were not implemented in SMITS. Dynamic bus control was not
implemented because there is no requirement for dynamic bus control transfer.

58

This was not considered a desirable means for transferring control to the
monitor. Synchronize (without data word) was not implemented because all syn-
chronization messages need the synchronize data word (provided by mode code 17)
to transmit minor cycle information. Selected transmitter shutdown is unneces-
sary because each hierarchical level is assumed to have two buses used in an
active/standby fashion which will be controlled by the transmitter shutdown mode
code. The BIU instruction word has a single bit dedicated to indicate on which
of two buses (A or B) a message will be transmitted. Therefore, a mode code
capable of controlling more than two buses per level is unnecessary in the SMITS.
Override selected transmitter shutdown was not implemented for the same reasons
as was selected transmitter shutdown. The equivalent function for two buses per

hierarchical level is provided by the override transmitter shutdown mode code.

The flows presenting mode command operations were modified to incorporate the
SMITS mode codes and reflect BIU method of operation.

4.3.3 Error/Failure Management

4.3.3.1 Message Retry Classes

Changes were made from the DAIS procedures to eliminate from the executive the
message retry classes that would almost never be used, yet allow the system user
to implement those message retry classes required for a particular application.
The executive size is thus reduced by eliminating unnecessary software. The DAIS
control procedures specify six classes of retry. Class I is an auto retry and
the other five are handled by the executive. The SMITS control procedures
changes this to two classes of retry, the class I auto retry and a class II user
defined retry.

Class II retries include user defined retries. This is a set of retries that are
optionally defined based upon the needs of the functioning operational system.
If the set of remote terminals and applications do not require these functions
then they need not be designed into the system. The careful retry and sequential
retry should be available software options, but independently available func-
tions. Likewise problems with remote terminal retry functions and conditions
under which an RT can be suspended from operation should exist as a separate
module, so that either an "example one" or a system designer's one can be
substituted without affecting the remainder of the executive. This independence
means that a well defined interface must exist for manipulating the BIU instruc-
tion lists so that terminal configuration management can occur.

4.3.3.2 Interrupt Processing (Master and Remote)

The BIU interrupt scheme is entirely different from that of the DAIS BCIU. There
are no "levels of interrupt" in the BIU. Conditions which require an interrupt
will cause the BIU to set bit(s) in the BIU's ISR and BIT register. The BIU scans
the ISR after every bus operation and interrupts its host processor upon detect-
ing any non-zero bit. A non-zero indication in the ISR's most important bit

59

(bit 11) indicates a fatal transfer error or a power-on-reset and causes the BIU
to halt immediately and to interrupt. The processor must read the BIU's ISR and
BIT register, and analyze them to determine how to service the interrupt. The
BIU ISR and BIT register are presented and described in this section. New flows
show how a BIU (master or remote) presents an interrupt to its processor, and how
that processor decodes the interrupt to initiate a response.

4.3.3.3 Status Word Analysis

The BIU operation dictated changes in the description of how status errors and
exceptions (RSE, XSE, RSEX and XSEX) are presented to the processor via the ISR
and BIT register. MIL-STD-1553B defines the status word differently than DAIS;
therefore, the 1553B status word definition as implemented in SMITS was examined
and a modified flow for status word analysis designed. The overall flow was
simplified by deletion of the mass memory unit and station logic unit specific
material of the DAIS implementation because all remotes use a common status word
in 1553B.

4.3.3.4 BIT Word Request and Analysis

This paragraph and its related flow were modified to incorporate the analysis of
the BIU BIT word, the BIU method of operation and the use of 1553B/SMITS mode
code 19 to retrieve the BIT word from a remote.

4.3.3.5 Terminal Failure Analysis

This procedure was modified to present how BIU implementation in master and
remote processors and remote terminals should allow terminal failure analysis.
Whether or not these procedures will work in a specific BIU based bus interface

is hardware implementation dependent. MIL-STD-1553B/SMITS mode codes were
incorporated in this procedure.

4.3.3.5.1 System Mass Memory Error/Failure Analysis

This procedure was modified because decentralized processing allows the removal
of most mass memory control from the executive and placement of that control in
the mass memory controller microprocessor. Mass memory unit (MMU) errors and
failures are best handled at the MMU, especially those concerned with character-
istics of the device. The master should only be concerned with assuring that
message transmission is accomplished between requesting terminal and the MMU.
Auto-retries from transmission problems should be handled via the normal proce-
dures. The object is to create an MMU which appears to be an RT in all transmis-
sion respects.

60

4.3.3.6 Core Element Tests

Similar to DAIS control procedures.

4.3.3.6.1 Processor Tests

Similar to DAIS control procedures.

4.3.3.6.2 BIU Test

The BCIU Power On Reset Test was deleted because the BIU does not perform like
the BCIU when power-on-reset occurs. The procedure for BIU test will vary
depending on the specific BIU/microprocessor interface implementation.

4.3.3.7 "FATAL ERROR" Management

This paragraph is similar to that of DAIS. No "fatal errors" have been deter-
mined for the SMITS. Specific errors will be documented as experience with an
actual system accumulates.

4.3.4 RT Serial/Digital Operation

RT serial digital operation was essentially eliminated from the executive and
moved into the remote processing elements to be performed directly as an I/O
function of the executive. This was done because (1) MIL-STD-1553B does not
directly or easily support serial digital operations and to do it in a way
similar to DAIS results in contorted use of 1553B, such as using synchronize mode
codes to perform unintended functions like resetting the service request bit and
removing serial digital channel lookout. (2) There is no reason to insist on
centralized control of serial digital operations when a microprocessor can
easily handle inputs as a function of its executive input/output. The error

handling of a serial digital transmission is handled locally by retrying read or
write operations. Release of the serial channel can be authorized by an asyn-
chronous message or by convention using multiple subaddresses. The purpose of
serial digital operations is to capture and hold inputs until successfully read.
This requirement does not restrict the communication to a single subaddress, so
that the "holding" can be performed sequentially and transmitted either syn-
chronously or asynchronously, depending on system design.

'I 61

4.3.5 Application Executive Services

These procedures are the same as in DAIS.

4.3.6 Mission Application Tasks

The mission application tasks were modified by making the subsystem status
monitor function part of configuration management.

4.3.7 Configuration Management

SMITS configuration management is quite different from DAIS mainly because of the
* hierarchical architecture of SMITS. Configuration management is a configura-

tion-dependent function which must be altered for each configuration of hardware
and possibly of software. This function exists separately and operates indepen-

* dently for each bus in the hierarchical system. An interbus processor will
therefore be a member of two configurations, but a configuration management
function will not generally need to be aware of this fact (with the exception
that the processor can serve the special function of providing I/O to another
"subsystem;" that is, another bus level).

All configuration status is reported "upward" from one configuration manager to
another. The status of each "subsystem" is periodically monitored by the higher
level configuration managers since a change in configuration may result in a
change in quality or availability of data. The structure of the configuration
status and the decision as to the disposition of an altered configuration is an
application dependent function.

4.3.8 Monitor Management

This procedure is essentially the same as DAIS; however, emphasis is placed on
minor cycle slippage as the primary bus control switchover method in SMITS.

4.4 BACKUP OPERATION

The "Recovery" mode of operation was eliminated as a term, since failure of a
monitor processor will be handled by the warm start procedures just as any
processor failure, and having a special case called "recovery" would be
misleading.

Also the definition of "Backup" mode was changed. If the master processor fails
during a noncritical mission phase, the monitor will take control and reconfigure
via the warm start procedures. The mode then entered is not Backup, but simply a

62

continuation of normal processing with a different configuration. Backup mode is
entered only if the master fails during a critical mission phase. This mode is
not a continuation of normal processing, but is instead a different set of
software tasks residing in the monitor processor.

4.5 SYSTEM RECONFIGURATION OPERATION

This section was changed due to the PCP changes. The pilot no longer powers down
individual processors, so "reconfiguration" is simply an inflight restart
initiated by the pilot pressing the LOAD or RESTART button.

K

p6

p _ _ _

APPENDIX B
RATIONALE FOR NONSTATIONARY MASTER INFORMATION TRANSFER

SYSTEM CONTROL PROCEDURES

SThe nonstationary master information transfer system (NSMITS) is based on the
stationary master information transfer system (SMITS), which in turn, is based on
the DAIS system. The system control procedures for the nonstationary master
system were written using the stationary master system control procedures as the
baseline. This appendix documents the rationale for changes made to the station-
ary master control procedures in the design of the nonstationary master.

*The paragraph numbering in this appendix corresponds directly with the paragraph
numbering of the nonstationary master system control procedures. For example,
the rationale for paragraph 3.2.5 of the nonstationary master system control
procedures is contained in paragraph 3.2.5 of this appendix.

46

"I

I

I

64

3.0 NSMITS SYSTEM OVERVIEW

A nonstationary master information transfer system differs from a stationary
master system in that several processors on the NSMITS bus are given their turn
as master of the bus during a minor cycle. The major reason for having a
nonstationary master system is to gain additional capabilities and independence
for multimission applications.

Bus control transfer between master processors on the NSMITS bus occurs in a
round robin sequence. A round robin protocol was chosen over a polling protocol
for its simplicity and low overhead. See the rationale for section 4.3.1.1 for
more details on the round robin protocol.

Two possible bus control transfer timing intervals were examined:

1. Each nonstationary master on the NSMITS bus functions as a bus controller
once per minor cycle.

2. Each nonstationary master on the NSMITS bus functions as a bus controller for
one complete minor cycle. Each nonstationary master would be a bus control-
ler every N minor cycles, where N is the number of nonstationary masters.

The first of these methods was chosen because it provides more frequent access to
the bus for data transmission.

3.1 GENERAL DESCRIPTION

In this nection the concept of primary and secondary masters is introduced. In a
nonstatt oiary master system there is still the requirement that one processor be
in contronl of the system timing and the other masters. This processor is

designated the primary master. Other processors which participate in the round

robin sequence of bus control transfer are called secondary masters.

3.2 CORE ELEMENTS

No change.

3.2.1 Bus Interface Unit (BIU)

No change.

3.2.2 Remote Terminal (RT)

No change.

[1 65

I-

3.2.3 Processors

No change.

3.2.4 Mission Software

No change.

3.2.4.1 Executive Software

The master executive of the stationary master system was divided into a master
executive and a system control executive for the nonstationary master system.
This modularization was adapated to reduce the size of the executive in the
secondary master processors by eliminating unneeded functions. Both the master
executive and the system control executive are required in the primary master and
monitor processors. The bus control executive is not required in the secondary
master. Thus, the bus control executive is given the function of supporting the
role of primary master.

The bus control function of the master executive was expanded to incude the
capability of accepting and giving up control of the data bus. This expansion is
necessary to accommodate the protocol of the nonstationary master system.

3.2.4.2 OFP Applications Software

In order to support multimission capability, the control procedures for the
configuration function of the OFP applications software state that each of the
bus controllers operate independently from the other controllers with respect to
task control.

3.2.4.3

No change.

K

3.2.5 System Mass Memory

The stationary master information transfer system control procedures specify the
mass memory controller to be an interbus processor. In the nonstationary master
system control procedures this was changed to make mass memory connected directly
only to the global NSMITS bus. The reason for this is the possibility of a tree
structure hierarchy of many different sub buses. If the mass memory was to be an
interbus processor then it would probably be between the global bus and the core

66

F .

avionics sub bus. This idea presents timing problems however. A master on the
NSMITS bus could have problems finding time to access mass memort, if it had to
wait while the sub bus had control of it. With the mass memory c cted to the
global NSMITS bus only, each bus controller can access mass mem,.. i when it is
master and relay mass memory requests from its sub bus at that same time. See the
rationale for section 4 .1.3 for details on mass memory protocol changes.

3.2.6 Processor Control Panel (PCP)

No change.

3.3 SUPPORT SOFTWARE

No change.

67

4.0 SYSTEM CONTROL PROCEDURES

A bus control management function was added to the normal system operation mode.
The rationale for this addition can be found in section 4.3.8.

4.1 SYSTEM STARTUP/RESTART OPERATION

No change.

4.1.1 Normal System Startup

A "lower bus still loading" flag was added to the startup status information of
interbus processors. The rationale for this is explained in section 4.1.1.3,
Configuration Identification.

4.1.1.1 Startup Self Testing

No change.

4.1.1.2 Bus Control Arbitration

If system loaders are not in ROM then they have to be loaded into the required
processors from mass memory. The loading of system loaders must occur in a
top/down order with the global bus first receiving its system loader, then
interbus processor to lower levels receiving system loaders. This is necessary
because a system loader is required in the higher bus levels to support a mass
memory transaction by the next lower level.

4.1 .1.3 Configuration Identification

Configuration identification and software module loading occurs in the lowest
bus levels first and proceeds up the hierarchy until the global bus is identified
and loaded. This procedure allows a higher bus level to change its configuration
based on the configuration of lower levels. A "lower bus still loading" flag is
used by interbus processors to prohibit the higher bus level from configuring and
loading until the lower level is finished and clears the flag.

68

I a 'N... .

4.1.1.4 Software Verification/Loading

No change.

4.1.1.5 Cold Initialization

No change.

4.1.2 Restart

No change.

4.1.2.1 Warm Start

No change.

4.1.2.2 Warm Initialization

No change.

4.1.2.3 Pilot Initiated Restarts

No change.

4.1.3 System Mass Memory Protocol

The NSMITS mass memory is connected only to the global bus. For this reason, the
SMITS mass memory operation of Release Access is deleted in the NSMITS protocol
and a new operation, End of Transfer, is defined. Also the Bus Level information
included in the mass memory status is deleted in the NSMITS mass memory protocol.

4.2 PREFLIGHT/POST FLIGHT TEST OPERATIONS

No change.

69

'I "-S. m I . .
.

4.3 NORMAL SYSTEM OPERATION

The following operating modes were changed or added in the change from stationary
master to nonstationary master:

Bus Control Transfer
Minor Cycle Synchronization
Mode Command Operations
Bus Control Management

The rationale for these changes or additions is contained in the appropriate
section.

4.3.1 Bus Control Operations

The function of bus control transfer was added to bus control operations as
explained in the next section.

4.3.1.1 Bus Control Transfer

Bus control transfer in the nonstationary master system is accomplished by using
the dynamic bus control mode code provided in MIL-STD-1553B. This mode code,
plus other messages as described in the control procedures, is contained in a
special purpose bus instruction list. By using a separate bus instruction list
rather than putting the bus control transfer commands at the end of the normal
synchronous instruction list it allows for status polling and scheduled low
priority asynchronous messages to occur after the synchronous instruction list
and before the bus control transfer.

In order to recover from bus control transfer failures, the bus control manage-
ment function, resident in the primary master, must be notified of the upcoming
change. The bus control transfer protocol, therefore, includes a message to bus

control management.

4.3.1.2 Minor Cycle Synchronization

For the nonstationary master system, the primary master is in control of the
system. Therefore, it is the primary master that initiates the minor cycle
synchronization on the NSMITS bus. The changes in bus synchronization are
explained in the next paragraph.

70

4.3.1.2.1 Bus Synchronization

Bus synchronization in the NSMITS system is essentially the same as in the SMITS
system. The difference is that in the NSMITS system the new minor cycle is not
started until the expiration of the minor cycle clock in the primary master and
the completion of the round robin sequence of bus control transfer for the
current minor cycle. Secondary masters do not maintain a minor cycle clock.

4.3.1.2.2 Local Executive Minor Cycle Setup

No change.

4.3.1.2.3 Master Executive Minor Cycle Setup

The secondary masters do not perform resetting of the minor cycle clock, but do
set up the next sequence of transmission lists.

4.3.1.3 Synchronous Bus Message Operation

In a SMITS system, the new minor cycle can start after the completion of the
synchronous instruction list. In the NSMITS system, however, bus control trans-
fer or the start of a new minor cycle can occur after the completion of the
synchronous instruction list depending on whether the processor is a primary or
secondary master.

4.3.1.3.1 Processor/BIU DMA Sequence (Master Mode)

In the NSMITS sy3tem, the primary master at the start of a minor cycle and the
secondary masters when they gain control of the bus, perform this sequence.

4.3.1.3.2 Processor/BIU DMA Sequence (Remote Mode)

No change.

4.3.1.4 Asynchronous Bus Message Operation

No change.

71

4.3.1.4.1 Interprocessor Asynchronous Messages

No change.

4.3.1.4.2 Critically Timed Asynchronous Message Operation

To provide simplicity and low overhead, each master on the NSMITS bus will handle
critically timed messages for devices in its sphere of control when it is master.

4.3.1.4.4 Status Polling

Provisions have been made in the NSMITS for each master to do a round of status
polling each time that it is master. To obtain the maximum multimission capabil-
ity possible, each master is allowed to do status polling instead of only the
primary master. Because a master may communicate with RT's that no other master
talks with, each master will do a status poll of only those RT's in its sphere of
control.

4.3.2 Mode Command Operations

The dynamic bus control mode code has been added to the mode command operations
of the NSMITS system to allow for bus control transfer.

4.3.3 Error Failure/Management

No change.

4.3.3.1 Message Retry Classes

No change.

4.3.3.2 Interrupt Processing (Master and Remote)

No change.

72
I

4

4.3,3.3 Status Word Analysis

i(No change.

4.3.3.4 BIT Word Request and Analysis

No change.

4.3.3.5 Terminal Failure Analysis

qNo change.

4.3.3.6 Core Elements

No change.

4.3.3.7 "FATAL ERROR" Management

No change.

4.3.4 RT Serial/Digital Channel Operation

No change.

4.3.5 Application Executive Services

No change.

4.3.6 Mission Application Tasks

No change.

4.3.7 Configuration Management

No change.

73

4.3.8 Bus Control Management

A new executive function, bus control management, has been defined for the
NSMITS. Bus control management resides in the primary master and monitor proces-
sors as part of the system control executive. Its function is to monitor the
round robin sequence of bus control transfer and to determine the processor at
fault if a bus control transfer fails. Bus control management then reports the
failure to configuration management which can perform a warm start on the bus to
eliminate the failed processor from the bus control transfer sequence via coor-
dination with affected secondary masters.

The reason that bus control management is not part of the configuration function
is that bus control management is required only to support the primary master
function, whereas the configuration management function is required in secondary
masters for devices in their sphere of control.

4.3.9 Monitor Management

No change.

4.4 BACKUP OPERATION

No change.

4.5 SYSTEM RECONFIGURATION OPERATION

No change.

7

74

APPENDIX C
RATIONALE FOR CONTENTION MULTIPLE ACCESS INFORMATION TRANSFER

SYSTEM CONTROL PROCEDURES

The system control procedures for CMAITS are substantially different from DAIS.
This discussion will not be directed as much toward changes to DAIS control
procedures as to specific problems encountered in the design of the contention
control procedures. This appendix assumes that the reader has available both the
contention ITS description of Interim Report #1, Volume 2, Appendix C and the
Contention Multiple Access ITS Control Procedures, Volume 3 of CDRL #18.

Contention Protocol Definition
The protocol of the contention system was defined to be substantially different

from MIL-STD-1553 because of two factors: (1) The messages are addressed by
content rather than by device number, and (2) the messages are broadcast so that

any combination of devices may receive any particular message. The Manchester
bi-phase form of data encoding was chosen to be the same as 1553B, but the format

of the command words were different (see Interim Report #1, Appendix C for the
detailed discussion). The address and subaddress fields were merged to allow a

10 bit message identifier field. MIL-STD-1553 was considered as a candidate
using the broadcast mode and using the message identifier (address) as the first
word in the message. This method was rejected for the CMAITS because the
protocol is still oriented around command-response, and additionally would

require an additional overhead word on each transmission. However, if a conten-

tion ITS were to be integrated into a bus system with a command-response set of

equipment, this protocol would be a likely candidate.

One concern of the broadcast system was that all of the destination devices would

not receive a broadcast message. It seems likely that a BIU, in a contention ITS

may transmit a message which cannot be interpreted by intended user terminals

either due to waveform errors or data validity check errors. However, the error

may not be detected by the transmitting BIU. The Manchester waveform may be

valid near the transmitting BIU, but not far along the bus. A means has provided

to notify the transmitting BIU that some terminal, which may have needed the

data, could not decode the message properly. Since the predominant transmission

mode in the contention ITS is broadcast, no particular terminal can be identified
as the intended destination.

A selected BIU could be designated as "bus monitor BIU" and would detect bus

errors. The bus monitor might transmit its error notice word (with a word sync

waveform like a Message/Request ID word) immediately upon detecting a quiescent

bus at the end of the bad message. It should avoid overlapping the bad message.

(The bus terminals must all detect a quiescent bus for a somewhat longer interval

before initiating their contention process, in order to allow enough time for the

bus monitor to detect a quiescent bus, complete the error detection function and

begin transmitting the error notice word.

The bus monitor may be nearer, along the bus, to the transmitter than some other

terminal or than some bus fault. Therefore, it seems that all, or at least

several, bus terminals must be allowed to act as bus monitors. In this arrange-

ment it seems likely that two or more bus monitors may produce a collision of

75

' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ wf A mamkmmam~m lnm ~ mln nanu w

error notice words. The error notice words would probably thereby be made non-
decodable. However, they still serve their purpose. Transmitting BIU's should
recognize any bus activity within a particular interval after their end of
transmission as an error notice word. If an error notice word should collide
with a message ID word which follows a request ID word in a sync type transac-
tion, the requesting BIU may perform error recovery as if the message ID word
were defective without regard to the cause of the error. However, the BIU which
initiated the request should not assume that the error is in the interrogated
BIU.

When a normal collision occurs, the terminals which are not transmitting will
detect Manchester waveform errors. These terminals cannot distinguish colli-
sions from other waveform errors. In this case all listening terminals will
transmit error notice words.

The time during which error notice words exclusively occupy the bus should be
minimized. Perhaps a shorter transmission than a 20-bit-time word will suffice
for an error notice. It is also desirable to avoid waste of bus time completing a
message in which a defect has been detected. It may be satisfactory to initiate
an error notice word transmission anytime after the initial collision detection
interval. The BIU's which initiate messages should perform continual waveform
analysis through the duration of the message, and should treat any abnormality as
an error notice.

It remains desirable for the transmitting BIU's to distinguish between normal
collisions at the beginning of the message and later errors for diagnostic and
error recovery purposes. If collisions can be detected by the transmitting BIU's
in a shorter interval than a complete word transmission time, then the colliding
transmissions can be terminated before complete word transmission. Monitoring
BIU's should ignore collision events which are represented by transmissions of
less than one word length.

The collision detection mechanism in the BIU is not well defined, although some
engineering work was done to determine its feasibility using Manchester phase
protocol. Detection of collisions may depend partly on different bit patterns in
message ID words which can be transmitted by different BIU's. If there are
Message ID words differing only in the last information bit, which can be trans-
mitted by different BIU's, then detection of collisions will be delayed until the
end of the first word. If the detection mechanism depends on bit differences,
then it would be desirable to concentrate the differences in message ID words in
the leading part of the word. This discrimination could be accomplished by
assigning a large bias number different for each BIU in the Message ID field.

The control procedures also provide a discussion on the allocation of message
ID's among processing elements to compensate for BIU collision detection cir-
cuitry which might not be able to detect a collision quickly during early
development of collision circuitry. The ID's provide adequate bit differences
during the initial transmission of the first word of a message to aid in the
detection of multiple messages simultaneously transmitted.

Cyclic Time Slot Bus Access Protocol Alternative
One attractive alternative bus protocol which was examined and rejected because

76

it was not quite as general as total contention in the context of multi-mission
applications was that of variable time slots. This access protocol avoids

message collisions and the necessity of collision detection circuitry in the

terminals. During the bus quiet period each terminal is assigned a definite and
limited transmission opportunity or time slot. The sequence of time slots is
repeated continually in regular order. When a terminal uses its time slot to
begin transmission, the passage of time slots is suspended until the message
period is complete.

Time-slot timing is maintained independently in each terminal, and all are resyn-
chronized by each message on the bus. The zero voltage bus signal crossing in
the middle of the last word in the synchronization wave form is used by all
terminals as the time slot reference signal. The time slot deviations among the
terminals are the sum of the following time increments:

a. The maximum bus signal propagation delay between two terminals (usually the
two terminals with the longest signal path between them).

b. The maximum time skew of the synchronization reference at two terminals due
to bus signal distortion and noise.

c. The maximum difference between two terminals' synchronization reference ac-
quisition time, and

d. The maximum relative drift between two terminals' time slot time bases during
the bus quiet period.

Bus messages ust occur at some maximum interval which is established to limit
the drift component of the time slot deviation. If system communications are not
frequent enough, then a special message must be provided. Figure A-i shows an
example of the message and time slot timing.

7

'I

!7

[.

ca

IA-

In 0 .

z 4nF C

4) 2 41-
S- 4) 4- .-

4) 00 45

cm U- 0 41i

-r 6 1 i

L. 5 1 . 0 w. =.L
0. g- W1 C 4 II

> ~ ~ ~ V 41 0')0 *

ul 45) L -
ou 'a- en0

4- 0 0 5 LU

cm 0% 40

S.. S- 2: >, - -

4.1 4 VI m 41
41 ou a to - 'a %A

A1 41 4A .6 L. M0u

4A #A 0 4141 C

W 4 A VI 'C cu w
va 'a S. 41 41'a

41 I'1 01 45 'a -- &A.
o5 w5 %245 1 0. wI -4 - ~

p.r 'a 'en a V a a 4

*VI V ~ 0 41 0 I en

Z S.. VI78

The time slot passage resumes TBD microseconds after the synchronization
reference event in the immediately preceding message. This delay includes the
remainder of the final word of the message and a fixed period when the bus is
normally quiet after any message, which allows for an error notice signal. The
first time slot after any request message word (request bit set in message ID
word) is reserved for the data message response to the request. After a data
message, the response time slot is omitted.

A short cycle of time slots is provided for transmission of high priority mes-
sages by a limited number of designated terminals. If a high priority time slot
is used, the high priority cycle resumes from the time slot of suspension when
the message interval is concluded. A complete cycle of high priority message
time slots must follow any message before the cycle of normal priority time slots
resumes. The cycle of normal priority time slots resumes from the time slot of
its suspension.

Each transmission must be timed so that it is detected in the same numbered time
slot by all terminals. Therefore, the transmission beginning must be delayed
from the terminal's time slot beginning by an interval at least equal to the
maximum time slot deviation.

The time slot duration is determined by the sum of the following increments:

e. The maximum time slot starting deviation among the terminals (sum of a, b, c,
d),

f. The transmission starting delay from the time slot beginning,
g. The maximum bus propagation delay for the new message,
h. The maximum sampling and processing time for any terminal to determine that

transmission is in process and suspend the passage of time slots, and
J. The time slot integrity margin.

While this protocol was initially rejected, it still appears to be an excellent
alternative protocol if a totally asynchronous access protocol is not acceptable
to a user because of a (perceived or real) requirement for synchronized access to
the bus.

Normal Operation
The normal operations of the CMAITS are expected to run with a moderate to low
number of collisions. The analyses performed in appendices C and D of the First
Interim Report showed that for what is expected for a "normal" set of avionics
traffic, the contention scheme should work well. Two contingencies have been
provided if the system starts to overload. If the overload is a temporary
collision overload, the entire transmission sequence is designed to slow down and
has been shown (ref. CACM, July 1976 pp 395-403) that it will not collapse from
too many desired communications. The protection mechanism is in the way that the
BIU computes its random waits following a collision. If the bus overload condi-
tion continually occurs, then the transmission medium should be increased. Fiber
optics buses easily can accommodate 10 megabit transmission rates, which could
alleviate any foreseeable overload condition.

79

The hierarchical influence is minimal on the contention scheme because of the
independence designed into it. If two buses attach to a single PE, then we
assume that the PE is a part of at most a single minor cycle sequence external to
its internal minor cycle operation. In actuality we expect that most devices
will be operating on their own minor cycles independently from the others,
especially at a node in the hierarchy.

The normal operations of the bus control include setting queue entries for the
BIU to transmit. There are four queues, for four distinct priority levels which
were identified: (1) responses to message requests from other PE's, (2) trigger
(high priority asynchronous) messages, (3) synchronous messages, and
(4) asynchronous messages. Because of the multiple priority levels, we felt that
the simplest approach to message management would be to add message transmission
queues and to garbage collect as appropriate.

*! The mass memory is used in normal operation to record mission and error data and
to retrieve data such as navigation aids. The mass memory is attached to a
single bus, and queues all requests from the independently operating PE's.
Because of the asynchronous behavior of the PE's, queueing of requests and
sequential responses seemed to be the most appropriate. The status of each
request to mass memory is however returned to the individual requestor prior to
any mass memory activity.

Abnormal Operations
Message errors are expected to be the most frequent type of an error. The
broadcast method precludes error notification except with the use of error moni-
tors, which are additional capabilities included in some BIU's, as was discussed
under normal operations. The grave concern about the use of such an option is
that an error monitor's two receivers could fail in such a way that every message
transmission could be determined to be invalid. The consequence of such a
failure is that the entire message traffic of the bus would be effectively
halted. The best option would be to require that the bus monitor be used to
control the configuration management of some of the devices and would be colo-
cated with a sphere controller.

The sphere controller is similar to the DAIS master executive in its functions of
minor cycle control and configuration control. If specific devices are inter-
related according to function, then the sphere controller assumes control for
that combination of devices, and performs its control based upon an initial
polling of functions available during startup, so that alternative configu-
rations of functioning can be computed.

*The sphere controller was added to the totally asynchronously operating ITS as an
option because some operations may be defined to require a synchronizing
activity. Similarly some level of configuration management may be required over
the bus. However, totally redundant devices could be integrated into the system
structure by operating concurrently, and each receiving device sorting out which
data is to be selected. This approach is the mode in which most avionics devices
currently operate on commercial and military aircraft. Hierarchical bus archi-
tectures are used in these systems to totally separate redundant devices into
pilot and copilot sides, each sharing common (single) sensors and functions. The

*goal in these configurations is to maintain separation and protection of one set

80

of avionics devices from another set of devices. Triple redundant and single
devices must be shared by the two separate sets of devices. This concept of
independence of function is a motivation to have a CMAITS which has neither
configuration management nor synchronization functions (i.e. no sphere
controller functions).

81

